Library Coq.Structures.OrdersEx
Require Import Orders BoolOrder PeanoNat POrderedType BinNat BinInt
RelationPairs EqualitiesFacts.
Require Import Ascii String.
Examples of Ordered Type structures.
Module Bool_as_OT := BoolOrder.BoolOrd.
Module Nat_as_OT := PeanoNat.Nat.
Module Positive_as_OT := BinPos.Pos.
Module N_as_OT := BinNat.N.
Module Z_as_OT := BinInt.Z.
An OrderedType can now directly be seen as a DecidableType
(Usual) Decidable Type for bool, nat, positive, N, Z
Module Bool_as_DT <: UsualDecidableType := Bool_as_OT.
Module Nat_as_DT <: UsualDecidableType := Nat_as_OT.
Module Positive_as_DT <: UsualDecidableType := Positive_as_OT.
Module N_as_DT <: UsualDecidableType := N_as_OT.
Module Z_as_DT <: UsualDecidableType := Z_as_OT.
From two ordered types, we can build a new OrderedType
over their cartesian product, using the lexicographic order.
Module PairOrderedType(O1 O2:OrderedType) <: OrderedType.
Include PairDecidableType O1 O2.
Definition lt :=
(relation_disjunction (O1.lt @@1) (O1.eq * O2.lt))%signature.
#[global]
Instance lt_strorder : StrictOrder lt.
#[global]
Instance lt_compat : Proper (eq==>eq==>iff) lt.
Definition compare x y :=
match O1.compare (fst x) (fst y) with
| Eq => O2.compare (snd x) (snd y)
| Lt => Lt
| Gt => Gt
end.
Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
End PairOrderedType.
Even if positive can be seen as an ordered type with respect to the
usual order (see above), we can also use a lexicographic order over bits
(lower bits are considered first). This is more natural when using
positive as indexes for sets or maps (see MSetPositive).
Local Open Scope positive.
Module PositiveOrderedTypeBits <: UsualOrderedType.
Definition t:=positive.
Include HasUsualEq <+ UsualIsEq.
Definition eqb := Pos.eqb.
Definition eqb_eq := Pos.eqb_eq.
Include HasEqBool2Dec.
Fixpoint bits_lt (p q:positive) : Prop :=
match p, q with
| xH, xI _ => True
| xH, _ => False
| xO p, xO q => bits_lt p q
| xO _, _ => True
| xI p, xI q => bits_lt p q
| xI _, _ => False
end.
Definition lt:=bits_lt.
Lemma bits_lt_antirefl : forall x : positive, ~ bits_lt x x.
Lemma bits_lt_trans :
forall x y z : positive, bits_lt x y -> bits_lt y z -> bits_lt x z.
#[global]
Instance lt_compat : Proper (eq==>eq==>iff) lt.
#[global]
Instance lt_strorder : StrictOrder lt.
Fixpoint compare x y :=
match x, y with
| x~1, y~1 => compare x y
| _~1, _ => Gt
| x~0, y~0 => compare x y
| _~0, _ => Lt
| 1, _~1 => Lt
| 1, 1 => Eq
| 1, _~0 => Gt
end.
Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
End PositiveOrderedTypeBits.
Module Ascii_as_OT <: UsualOrderedType.
Definition t := ascii.
Include HasUsualEq <+ UsualIsEq.
Definition eqb := Ascii.eqb.
Definition eqb_eq := Ascii.eqb_eq.
Include HasEqBool2Dec.
Definition compare (a b : ascii) := N_as_OT.compare (N_of_ascii a) (N_of_ascii b).
Definition lt (a b : ascii) := N_as_OT.lt (N_of_ascii a) (N_of_ascii b).
#[global]
Instance lt_compat : Proper (eq==>eq==>iff) lt.
#[global]
Instance lt_strorder : StrictOrder lt.
Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
End Ascii_as_OT.
String is an ordered type with respect to the usual lexical order.
Module String_as_OT <: UsualOrderedType.
Definition t := string.
Include HasUsualEq <+ UsualIsEq.
Definition eqb := String.eqb.
Definition eqb_eq := String.eqb_eq.
Include HasEqBool2Dec.
Fixpoint compare (a b : string)
:= match a, b with
| EmptyString, EmptyString => Eq
| EmptyString, _ => Lt
| String _ _, EmptyString => Gt
| String a_head a_tail, String b_head b_tail =>
match Ascii_as_OT.compare a_head b_head with
| Lt => Lt
| Gt => Gt
| Eq => compare a_tail b_tail
end
end.
Definition lt (a b : string) := compare a b = Lt.
#[global]
Instance lt_compat : Proper (eq==>eq==>iff) lt.
Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
#[global]
Instance lt_strorder : StrictOrder lt.
End String_as_OT.