
Private inductive types

July 2013



Introduction

I Higher Inductive types: adding equalities

I Preventing inconsistencies

I Preserving convertibility

I Simulating with private types



What is this thing called Equality

I A family of equality types: for x y : A, x = y is a type

I Described as an inductive type: no specific treatment

I Induction principle illuminating
∀A : Type.∀x : A.
∀P : A → Prop.P(x) ⇒ ∀y : A. x = y ⇒ P(y)

I If x = y then every property satisfied by x is also satisfied by y
I x and y are undistinguishable

I Are they really?



using a magnifying glass

I Say that when x = y, then x and y are not really the same
for all purposes

I So x = y should only mean there is a path between x and y

I Distinction at a microscopic level

I But at the macroscopic level, still x and y are equal.



Build new objects with paths between them

I State at the same time the creation of objects and the
property that they are identical.

I Example: assert the existence of two points N and S and two
paths between them.

I Already done easily for points using inductive types
I What about the paths?

I Natural to add paths as axioms



Inconsistencies with axiomatic paths

I Usual interpretation of equality (identity) types
I Ultimately only one way to build proofs of equality: reflexivity

I No confusion property of inductive types
I Rely on strong elimination

I Axiomatic paths between constructors incompatible with
no-confusion



Illustration

Inductive cellc :=

N | S.

Axiom west : N = S.

Axiom east : N = S.

I Obviously inconsistent in plain Coq.



Preventing inconsistency

I Allow only to define function that preserve path consistency

I In illustration, f N and f S must have a path between them.

I Also take into account dependent types

I Solution already easy to implement in Agda



Heavy solution

I Avoid inductive types

I State axioms for all elements of the higher inductive type



Illustrating the heavy solution

Parameters (cellc : Type) (N S : cellc).

Axioms west east : N = S.

Parameter cellc_rect (P : cellc -> Type)

(vn : P N) (vs : P S)

(pw : eq_rect N P vn S west = vs)

(pe : eq_rect N P vn S east = vs)

(x : cellc) : P x.

Axiom cellc_rect_N :=

forall P vn vs pw pe, cellc_rect P vn vs pw pe N = vn.

Axiom cellc_rect_S :=

forall P vn vs pw pe, cellc_rect P vn vs pw pe S = vs.



What’s wrong with being heavy?

I Provably equal is not convertible
I cellc rect P vn vs pw pe N and vn are not convertible

I More uses of eq rect are required everywhere

I The size of proofs increases drastically



Adding convertibility

I Come back to inductive types

I Design elimination function to enforce guarantees

Definition cellc_rect (P : cellc -> Type)

(vn : P N) (vs : P S)

(pw : eq_rect N P vn S west = vs)

(pe : eq_rect N P vn S east = vs) (x : cellc) :=

match x return P x with N => vn | S => vs end.



Computing with cellc rect

I cellc rect P vn vs pw pe N and vn are now convertible

I Okay if the only functions definable in Coq have to be defined
using cellc rect.

I Need to forbid direct use of pattern-matching, tactics case,
discriminate, inversion, injection. . .



Idea of private types

I In a module, define an inductive type to be private

I Inside module: unsafe operations, trusting the programmer

I Outside module: more safety, only functions provided by
module designer

I Preserve computation (convertibility) for functions provided in
the module

I No modification of the kernel, only module handling

I Deactivate tactics and syntax

I Hard questions about consistency: not treated by the kernel



Simulating the circle inductive type

Module Circle.

Local Inductive Circle := N | S.

Axiom east : N = S.

Axiom west : N = S.

Definition circle_induction (A : Type)(vn : A)(vs : A)

(epd : vn = vs)(wpd : vn = vs)(x : circle) : A :=

match x with N => vn | S => vs end.

Axiom circle_induction_cws :

forall A vn vs epd wpd,

ap (circle_induction vn vs epd wpd) east_side = epd.

End Circle.



Conclusion

I Potential inconsistency comes from adding axioms

I Idea of private types orthogonal to axioms

I Application outside homotopy theory are probable


