
Towards primitive data types for COQ

Towards primitive data types for COQ:
63-bits integers and persistent arrays1

Maxime Dénès

Inria Sophia-Antipolis

July 22, 2013

1This work has been funded by the FORMATH project, nr. 243847, of the FET program
within the 7th Framework program of the European Commission.
Maxime Dénès 1



Towards primitive data types for COQ | Introduction

Motivation

Growing need for e�icient computations in proof systems.

Typical uses:

Proofs by computation: four color theorem, Kepler conjecture,
certification of prime numbers
Automation: deciding identities over rings, Kleene algebras, untrusted
calls to external solvers
Other uses: importing proof objects from other systems, emitting
assembly code

But also e�iciency of extracted code: floating-point arithmetic,. . .

Maxime Dénès 2



Towards primitive data types for COQ | Introduction

Motivation

Growing need for e�icient computations in proof systems.

Typical uses:
Proofs by computation: four color theorem, Kepler conjecture,
certification of prime numbers

Automation: deciding identities over rings, Kleene algebras, untrusted
calls to external solvers
Other uses: importing proof objects from other systems, emitting
assembly code

But also e�iciency of extracted code: floating-point arithmetic,. . .

Maxime Dénès 2



Towards primitive data types for COQ | Introduction

Motivation

Growing need for e�icient computations in proof systems.

Typical uses:
Proofs by computation: four color theorem, Kepler conjecture,
certification of prime numbers
Automation: deciding identities over rings, Kleene algebras, untrusted
calls to external solvers

Other uses: importing proof objects from other systems, emitting
assembly code

But also e�iciency of extracted code: floating-point arithmetic,. . .

Maxime Dénès 2



Towards primitive data types for COQ | Introduction

Motivation

Growing need for e�icient computations in proof systems.

Typical uses:
Proofs by computation: four color theorem, Kepler conjecture,
certification of prime numbers
Automation: deciding identities over rings, Kleene algebras, untrusted
calls to external solvers
Other uses: importing proof objects from other systems, emitting
assembly code

But also e�iciency of extracted code: floating-point arithmetic,. . .

Maxime Dénès 2



Towards primitive data types for COQ | Introduction

Motivation

Growing need for e�icient computations in proof systems.

Typical uses:
Proofs by computation: four color theorem, Kepler conjecture,
certification of prime numbers
Automation: deciding identities over rings, Kleene algebras, untrusted
calls to external solvers
Other uses: importing proof objects from other systems, emitting
assembly code

But also e�iciency of extracted code: floating-point arithmetic,. . .

Maxime Dénès 2



Towards primitive data types for COQ | Introduction

From e�icient evaluation. . .

Evaluation of terms inside COQ has improved a lot over years:

Lazy evaluation machine
Bytecode-based dedicated compiler and virtual machine
Compilation to native code through OCAML

Maxime Dénès 3



Towards primitive data types for COQ | Introduction

From e�icient evaluation. . .

Evaluation of terms inside COQ has improved a lot over years:

Lazy evaluation machine

Bytecode-based dedicated compiler and virtual machine
Compilation to native code through OCAML

Maxime Dénès 3



Towards primitive data types for COQ | Introduction

From e�icient evaluation. . .

Evaluation of terms inside COQ has improved a lot over years:

Lazy evaluation machine
Bytecode-based dedicated compiler and virtual machine

Compilation to native code through OCAML

Maxime Dénès 3



Towards primitive data types for COQ | Introduction

From e�icient evaluation. . .

Evaluation of terms inside COQ has improved a lot over years:

Lazy evaluation machine
Bytecode-based dedicated compiler and virtual machine
Compilation to native code through OCAML

Maxime Dénès 3



Towards primitive data types for COQ | Introduction

. . . to e�icient data representations

But these e�orts can be vain without adapted representations for data.

Especially important in a purely functional setting.
A symptomatic case: natural numbers.

In the following, I will review the solutions implemented in COQ for e�icient
integer arithmetic and suggest some improvements.

Maxime Dénès 4



Towards primitive data types for COQ | Introduction

. . . to e�icient data representations

But these e�orts can be vain without adapted representations for data.

Especially important in a purely functional setting.
A symptomatic case: natural numbers.

In the following, I will review the solutions implemented in COQ for e�icient
integer arithmetic and suggest some improvements.

Maxime Dénès 4



Towards primitive data types for COQ | Introduction

. . . to e�icient data representations

But these e�orts can be vain without adapted representations for data.

Especially important in a purely functional setting.
A symptomatic case: natural numbers.

In the following, I will review the solutions implemented in COQ for e�icient
integer arithmetic and suggest some improvements.

Maxime Dénès 4



Towards primitive data types for COQ | Integers

Numbers in COQ: Peano numbers

Simple definition (nat), easy inductive reasoning.

But not very loyal to the user interested in computations.

Coq < Definition x := 10000.
Warning: Stack overflow or segmentation fault happens when
working with large numbers in nat (observed threshold may
vary from 5000 to 70000 depending on your system limits
and on the command executed).
x is defined

Maxime Dénès 5



Towards primitive data types for COQ | Integers

Numbers in COQ: Peano numbers

Simple definition (nat), easy inductive reasoning.

But not very loyal to the user interested in computations.

Coq < Definition x := 10000.
Warning: Stack overflow or segmentation fault happens when
working with large numbers in nat (observed threshold may
vary from 5000 to 70000 depending on your system limits
and on the command executed).
x is defined

Maxime Dénès 5



Towards primitive data types for COQ | Integers

Numbers in COQ: Peano numbers

Simple definition (nat), easy inductive reasoning.

But not very loyal to the user interested in computations.

Coq < Definition x := 10000.
Warning: Stack overflow or segmentation fault happens when
working with large numbers in nat (observed threshold may
vary from 5000 to 70000 depending on your system limits
and on the command executed).
x is defined

Maxime Dénès 5



Towards primitive data types for COQ | Integers

Numbers in COQ: binary numbers

Inductive positive : Set :=
| xI : positive -> positive
| xO : positive -> positive
| xH : positive.

Inductive N : Set :=
| N0 : N
| Npos : positive -> N.

Slight complication for uniqueness of 0, definition of positive binary
numbers (positive) and then binary naturals (N).

Exponential gain in space and time, but still too limited for heavy
computations.

Maxime Dénès 6



Towards primitive data types for COQ | Integers

Numbers in COQ: big naturals

Based on a representation of numbers as binary trees (bigN).

Well-suited to the implementation of Karatsuba’s product.

Performance rely critically on the inlining of operators for small trees
(height≤ 6), hence a fairly complex implementation.

Leaves were first implemented by an inductive type with 256 constructors,
but in recent versions they are substituted with native 31-bits integers.

Maxime Dénès 7



Towards primitive data types for COQ | Integers

Numbers in COQ: big naturals

Based on a representation of numbers as binary trees (bigN).

Well-suited to the implementation of Karatsuba’s product.

Performance rely critically on the inlining of operators for small trees
(height≤ 6), hence a fairly complex implementation.

Leaves were first implemented by an inductive type with 256 constructors,
but in recent versions they are substituted with native 31-bits integers.

Maxime Dénès 7



Towards primitive data types for COQ | Integers

Numbers in COQ: big naturals

Based on a representation of numbers as binary trees (bigN).

Well-suited to the implementation of Karatsuba’s product.

Performance rely critically on the inlining of operators for small trees
(height≤ 6), hence a fairly complex implementation.

Leaves were first implemented by an inductive type with 256 constructors,
but in recent versions they are substituted with native 31-bits integers.

Maxime Dénès 7



Towards primitive data types for COQ | Integers

Numbers in COQ: big naturals

Based on a representation of numbers as binary trees (bigN).

Well-suited to the implementation of Karatsuba’s product.

Performance rely critically on the inlining of operators for small trees
(height≤ 6), hence a fairly complex implementation.

Leaves were first implemented by an inductive type with 256 constructors,
but in recent versions they are substituted with native 31-bits integers.

Maxime Dénès 7



Towards primitive data types for COQ | Integers

Numbers in COQ: 31-bits integers

In the current version of COQ, 31-bits integers are represented by an
inductive type:

Inductive digits : Type := D0 | D1.

Definition digits31 t :=
Eval compute in nfun digits 31 t.

Inductive int31 : Type := I31 : digits31 int31.

But during an evaluation or a conversion using the VM, it is substituted with
native machine arithmetic.

This machinery is called “retroknowledge”.

Maxime Dénès 8



Towards primitive data types for COQ | Integers

Numbers in COQ: 31-bits integers

In the current version of COQ, 31-bits integers are represented by an
inductive type:

Inductive digits : Type := D0 | D1.

Definition digits31 t :=
Eval compute in nfun digits 31 t.

Inductive int31 : Type := I31 : digits31 int31.

But during an evaluation or a conversion using the VM, it is substituted with
native machine arithmetic.

This machinery is called “retroknowledge”.

Maxime Dénès 8



Towards primitive data types for COQ | Integers

Numbers in COQ: 31-bits integers

In the current version of COQ, 31-bits integers are represented by an
inductive type:

Inductive digits : Type := D0 | D1.

Definition digits31 t :=
Eval compute in nfun digits 31 t.

Inductive int31 : Type := I31 : digits31 int31.

But during an evaluation or a conversion using the VM, it is substituted with
native machine arithmetic.

This machinery is called “retroknowledge”.

Maxime Dénès 8



Towards primitive data types for COQ | Primitive

Retroknowledge vs primitive data types

An alternative to “retroknowledge” would be to introduce in the formalism
a primitive type int, with operators and axiomatized equational theory.

With a major gain: benefits frommachine arithmetic are not limited to the
conversion test, but available in the whole system.

But a few drawbacks:
Requires to enrich the formalism
Does not give computational meaning to the axioms encoding the
equational theory

Maxime Dénès 9



Towards primitive data types for COQ | Primitive

Retroknowledge vs primitive data types

An alternative to “retroknowledge” would be to introduce in the formalism
a primitive type int, with operators and axiomatized equational theory.

With a major gain: benefits frommachine arithmetic are not limited to the
conversion test, but available in the whole system.

But a few drawbacks:
Requires to enrich the formalism
Does not give computational meaning to the axioms encoding the
equational theory

Maxime Dénès 9



Towards primitive data types for COQ | Primitive

Retroknowledge vs primitive data types

An alternative to “retroknowledge” would be to introduce in the formalism
a primitive type int, with operators and axiomatized equational theory.

With a major gain: benefits frommachine arithmetic are not limited to the
conversion test, but available in the whole system.

But a few drawbacks:
Requires to enrich the formalism
Does not give computational meaning to the axioms encoding the
equational theory

Maxime Dénès 9



Towards primitive data types for COQ | Primitive

Retroknowledge vs primitive data types

Still, we propose to replace “retroknowledge” by some primitive data
types, because it is sometimes unavoidable:

No guarantee that an inductive type can be defined to reflect the
computational behavior
Explicit constructions can be too costly to typecheck (outside
conversion), or even to allocate!

Maxime Dénès 10



Towards primitive data types for COQ | Primitive

Primitive persistent arrays
Persistent arrays have a functional interface, but internally use destructive
arrays.

They maintain a history of changes made to elements in the array.

We ported them as a primitive data type:

Register array : Type -> Type as array_type.
Register get : forall {A:Type}, array A -> int -> A

as array_get.
Register set : forall {A:Type}, array A -> int -> A

-> array A as array_set.
Register length : forall {A:Type}, array A -> int as

array_length.
Register init : forall {A:Type}, int -> (int -> A)

-> A -> array A as array_init.
Register map : forall {A B:Type}, (A -> B) -> array

A -> array B as array_map.

Maxime Dénès 11



Towards primitive data types for COQ | Primitive

Primitive persistent arrays
Persistent arrays have a functional interface, but internally use destructive
arrays.

They maintain a history of changes made to elements in the array.

We ported them as a primitive data type:

Register array : Type -> Type as array_type.
Register get : forall {A:Type}, array A -> int -> A

as array_get.
Register set : forall {A:Type}, array A -> int -> A

-> array A as array_set.
Register length : forall {A:Type}, array A -> int as

array_length.
Register init : forall {A:Type}, int -> (int -> A)

-> A -> array A as array_init.
Register map : forall {A B:Type}, (A -> B) -> array

A -> array B as array_map.
Maxime Dénès 11



Towards primitive data types for COQ | Primitive

Primitive 63-bits integers

Unlike OCAML, modular arithmetic libraries in COQ aim at being portable
(i.e. have the same behavior on di�erent architectures).

In the previous setting, 31-bit arithmetic was native on 32-bits
architectures and emulated (using 63-bits arithmetic) on 64-bits machines.

We propose to do it the other way around, and provide two
implementations of an interface of unsigned 63-bits arithmetic:

One relying on OCAML’s int type, to be used on 64-bits architectures
The other using OCAML’s Int64module to emulate 63-bits integers, to
be used on 32-bits architectures

The implementation is chosen when COQ is compiled.

Maxime Dénès 12



Towards primitive data types for COQ | Primitive

Primitive 63-bits integers

Unlike OCAML, modular arithmetic libraries in COQ aim at being portable
(i.e. have the same behavior on di�erent architectures).

In the previous setting, 31-bit arithmetic was native on 32-bits
architectures and emulated (using 63-bits arithmetic) on 64-bits machines.

We propose to do it the other way around, and provide two
implementations of an interface of unsigned 63-bits arithmetic:

One relying on OCAML’s int type, to be used on 64-bits architectures
The other using OCAML’s Int64module to emulate 63-bits integers, to
be used on 32-bits architectures

The implementation is chosen when COQ is compiled.

Maxime Dénès 12



Towards primitive data types for COQ | Primitive

Primitive 63-bits integers

Unlike OCAML, modular arithmetic libraries in COQ aim at being portable
(i.e. have the same behavior on di�erent architectures).

In the previous setting, 31-bit arithmetic was native on 32-bits
architectures and emulated (using 63-bits arithmetic) on 64-bits machines.

We propose to do it the other way around, and provide two
implementations of an interface of unsigned 63-bits arithmetic:

One relying on OCAML’s int type, to be used on 64-bits architectures

The other using OCAML’s Int64module to emulate 63-bits integers, to
be used on 32-bits architectures

The implementation is chosen when COQ is compiled.

Maxime Dénès 12



Towards primitive data types for COQ | Primitive

Primitive 63-bits integers

Unlike OCAML, modular arithmetic libraries in COQ aim at being portable
(i.e. have the same behavior on di�erent architectures).

In the previous setting, 31-bit arithmetic was native on 32-bits
architectures and emulated (using 63-bits arithmetic) on 64-bits machines.

We propose to do it the other way around, and provide two
implementations of an interface of unsigned 63-bits arithmetic:

One relying on OCAML’s int type, to be used on 64-bits architectures
The other using OCAML’s Int64module to emulate 63-bits integers, to
be used on 32-bits architectures

The implementation is chosen when COQ is compiled.

Maxime Dénès 12



Towards primitive data types for COQ | Primitive

Primitive 63-bits integers

Unlike OCAML, modular arithmetic libraries in COQ aim at being portable
(i.e. have the same behavior on di�erent architectures).

In the previous setting, 31-bit arithmetic was native on 32-bits
architectures and emulated (using 63-bits arithmetic) on 64-bits machines.

We propose to do it the other way around, and provide two
implementations of an interface of unsigned 63-bits arithmetic:

One relying on OCAML’s int type, to be used on 64-bits architectures
The other using OCAML’s Int64module to emulate 63-bits integers, to
be used on 32-bits architectures

The implementation is chosen when COQ is compiled.

Maxime Dénès 12



Towards primitive data types for COQ | Primitive

Primitive 63-bits integers

We plugged the standard kernel conversion and the reduction by
compilation to native code to this native 63-bits arithmetic (the VM will
follow).

As a byproduct, we started to re-think the design of the BigN library.

Maxime Dénès 13



Towards primitive data types for COQ | Primitive

A new library of big numbers?
With the use of 63-bits integers, typical applications require less machine
words to represent numbers that then used to.

The tree representation underlying BigNmay no longer be relevant.

We implemented a prototype library based on lists of 63-bits integers:

Definition big_nat := list int.
Fixpoint add_big (a b : big_nat) (c : bool) :=
match a, b with
| nil, nil => if c then 1 :: nil else nil
| i :: is, nil => if c then succ a else a
| nil, j :: js => if c then succ b else b
| i :: is, j :: js => if c then
let r := i + j + 1 in r :: add_big is js (r <= i)
else let r := i + j in r :: add_big is js (r < i)

end.
Definition add (a b : big_nat) := add_big a b false.

Maxime Dénès 14



Towards primitive data types for COQ | Primitive

A new library of big numbers?
With the use of 63-bits integers, typical applications require less machine
words to represent numbers that then used to.
The tree representation underlying BigNmay no longer be relevant.

We implemented a prototype library based on lists of 63-bits integers:

Definition big_nat := list int.
Fixpoint add_big (a b : big_nat) (c : bool) :=
match a, b with
| nil, nil => if c then 1 :: nil else nil
| i :: is, nil => if c then succ a else a
| nil, j :: js => if c then succ b else b
| i :: is, j :: js => if c then
let r := i + j + 1 in r :: add_big is js (r <= i)
else let r := i + j in r :: add_big is js (r < i)

end.
Definition add (a b : big_nat) := add_big a b false.

Maxime Dénès 14



Towards primitive data types for COQ | Primitive

A new library of big numbers?
With the use of 63-bits integers, typical applications require less machine
words to represent numbers that then used to.
The tree representation underlying BigNmay no longer be relevant.

We implemented a prototype library based on lists of 63-bits integers:

Definition big_nat := list int.
Fixpoint add_big (a b : big_nat) (c : bool) :=
match a, b with
| nil, nil => if c then 1 :: nil else nil
| i :: is, nil => if c then succ a else a
| nil, j :: js => if c then succ b else b
| i :: is, j :: js => if c then
let r := i + j + 1 in r :: add_big is js (r <= i)
else let r := i + j in r :: add_big is js (r < i)

end.
Definition add (a b : big_nat) := add_big a b false.

Maxime Dénès 14



Towards primitive data types for COQ | Primitive

A new library of big numbers?
With the use of 63-bits integers, typical applications require less machine
words to represent numbers that then used to.
The tree representation underlying BigNmay no longer be relevant.

We implemented a prototype library based on lists of 63-bits integers:

Definition big_nat := list int.
Fixpoint add_big (a b : big_nat) (c : bool) :=
match a, b with
| nil, nil => if c then 1 :: nil else nil
| i :: is, nil => if c then succ a else a
| nil, j :: js => if c then succ b else b
| i :: is, j :: js => if c then
let r := i + j + 1 in r :: add_big is js (r <= i)
else let r := i + j in r :: add_big is js (r < i)

end.
Definition add (a b : big_nat) := add_big a b false.

Maxime Dénès 14



Towards primitive data types for COQ | Primitive

Benchmarks (64-bits architecture)

Fibonacci Wolfram

20

40

60

80

100
100 100

30

1013
3Re

la
tiv
e
ru
nn
in
g
tim

e
(%
)

BigN/Int31 BigN/Int63 ListBigN/Int63

Maxime Dénès 15



Towards primitive data types for COQ | Primitive

Benchmarks (32-bits architecture)

Fibonacci Wolfram

20

40

60

80

100

50 50

100 100

77

31

Re
la
tiv
e
ru
nn
in
g
tim

e
(%
)

BigN/Int31 BigN/Int63 ListBigN/Int63

Maxime Dénès 16



Towards primitive data types for COQ | Conclusion

Conclusion

Three proposals:
Replace “retroknowledge” with primitive data types
Switch from 31-bits to 63-bits arithmetic
Design a simpler andmore e�icient library for big numbers

Moral of the story:
Better verify a computation with a slightly bigger trusted base than
not verify it at all
O�en valuable to periodically re-think the design of parts of a system
(here COQ) to follow the evolution of hardware and so�ware
components

Maxime Dénès 17



Towards primitive data types for COQ | Conclusion

Conclusion

Remaining issues:

Modular and flexible extension of the trusted base
Unverified ad-hoc code in the parser and the printer for big numbers

Maxime Dénès 18



Towards primitive data types for COQ | Conclusion

Thank you!

Maxime Dénès 19


	Introduction
	Integers
	Primitive
	Conclusion

