A New Formalization of Power Series in Coq

Catherine Lelay

Toccata, Inria Saclay - Île-de-France LRI, Université Paris-Sud

5th Coq Workshop
Rennes, July 22nd

The Coquelicot project

- Goal :
- build a user-friendly library of real analysis in Coq.

The Coquelicot project

- Goal :
- build a user-friendly library of real analysis in Coq.
- Previous work [CPP' 2012] :
- total functions to easily write limits, derivatives and integrals,
- tactic to automatize proofs of differentiability.

A few words about limits of sequences

Definition of limit in the style of the standard library:
Definition Lim_seq $\left(u_{n}\right)_{n \in \mathbb{N}}$
(pr : \{1 : R | Un_cv $\left.\left(u_{n}\right)_{n \in \mathbb{N}} 1\right\}$) := projT1 pr.
with dependent type

A few words about limits of sequences

$$
\begin{aligned}
& \text { Definition Lim_seq }\left(u_{n}\right)_{n \in \mathbb{N}}:= \\
& \frac{\overline{\lim }\left(u_{n}\right)+\underline{\lim }\left(u_{n}\right)}{2} \in \overline{\mathbb{R}} \\
& \text { total function }
\end{aligned}
$$

A few words about limits of sequences

Definition Lim_seq $\left(u_{n}\right)_{n \in \mathbb{N}}:=$

$$
\frac{\overline{\lim }\left(u_{n}\right)+\underline{\lim }\left(u_{n}\right)}{2} \in \overline{\mathbb{R}}
$$

total function
without dependent type
Some other user-friendly definitions:

- $\operatorname{Lim}_{t \rightarrow \mathrm{x}} f(t):=\operatorname{Lim}_{-} \operatorname{seq}\left(f\left(x_{n}\right)\right)_{n \in \mathbb{N}} \in \overline{\mathbb{R}}$ when $\lim \left(x_{n}\right)_{n \in \mathbb{N}}=\mathrm{x}$
- Derive $f(x: R):=\operatorname{Lim}_{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right) \in \mathbb{R}$
- RInt $f(\mathrm{a} \mathrm{b}: \mathrm{R}):=\operatorname{Lim} _\operatorname{seq}\left(\frac{b-a}{n} \sum_{k=0}^{n} f\left(x_{k}\right)\right)_{n \in \mathbb{N}} \in \mathbb{R}$

Some applications

- D'Alembert Formula [CPP' 2012]
$u(x, t)=\frac{1}{2}\left[u_{0}(x+c t)+u_{0}(x-c t)\right]+\frac{1}{2 c} \int_{x-c t}^{x+c t} u_{1}(\xi) d \xi$ $+\frac{1}{2 c} \int_{0}^{t} \int_{x-c(t-\tau)}^{2 c}{ }^{x+c}(t-\tau) \quad f(\xi, \tau) d \xi d \tau$
$\frac{\partial^{2} u}{\partial t^{2}}(x, t)-c \frac{\partial^{2} u}{\partial x^{2}}(x, t)=f(x, t)$
- Convergence of a sequence based on algebraic-geometric means [Bertot 2013]
$a_{0}=1, b_{0}=\frac{1}{x}, a_{n+1}=\frac{a_{n}+b_{n}}{2}, b_{n+1}=\sqrt{a_{n} b_{n}}$ and
$f(x)=\lim a_{n}=\lim b_{n} \Rightarrow \pi=2 \sqrt{2} f\left(\frac{1}{\sqrt{2}}\right) / f^{\prime}\left(\frac{1}{\sqrt{2}}\right)$
- Baccalaureate of Mathematics 2013 [BAC 2013]

$$
\int_{\frac{1}{e}}^{1} \frac{2+2 \ln x}{x} d x=1
$$

Motivations to build power series

Some of the many uses of power series:

- basic functions ($\left.e^{x}, \sin , \cos , \ldots\right)$,
- solutions for differential equations,
- equivalent functions,
- generating functions, ...
\Rightarrow must be formalized in a library of real analysis.

Coq standard library

- about sequences
- two different definitions for limits toward finite limit and $+\infty$
- limits of sums, opposites, products, and multiplicative inverses of sequences in the finite case
- about power series
- series of real numbers provide convergence criteria
- sequences of functions provide continuity and differentiability

Coq standard library

- about sequences
- two different definitions for limits toward finite limit and $+\infty$
- limits of sums, opposites, products, and multiplicative inverses of sequences in the finite case
- about power series
- series of real numbers provide convergence criteria
- sequences of functions provide continuity and differentiability
- not in the standard library:
- single definition for both finite and infinite limits ($\pm \infty$)
- limits of sums, opposites, products, and multiplicative inverses of sequences in the infinite case
- arithmetic operations on power series
- integrability of power series

Coq standard library

- about sequences
- two different definitions for limits toward finite limit and $+\infty$
- limits of sums, opposites, products, and multiplicative inverses of sequences in the finite case
- about power series
- series of real numbers provide convergence criteria
- sequences of functions provide continuity and differentiability
- in the Coquelicot library:
- single definition for both finite and infinite limits ($\pm \infty$)
- limits of sums, opposites, products, and multiplicative inverses of sequences in the infinite case
- arithmetic operations on power series
- integrability of power series

Coquelicot library - CPP version

Coquelicot library - present version

Definition

- Series:

$$
\text { Series }\left(a_{n}\right)_{n \in \mathbb{N}}=\text { Lim_seq }\left(\sum_{k=0}^{n} a_{k}\right)_{n \in \mathbb{N}}
$$

- Power series:

$$
\text { PSeries }\left(a_{n}\right)_{n \in \mathbb{N}}=\text { Series }\left(a_{k} x^{k}\right)_{n \in \mathbb{N}}
$$

Definition

- Series:

$$
\text { Series }\left(a_{n}\right)_{n \in \mathbb{N}}=\text { Lim_seq }\left(\sum_{k=0}^{n} a_{k}\right)_{n \in \mathbb{N}}
$$

- Power series:

$$
\text { PSeries }\left(a_{n}\right)_{n \in \mathbb{N}}=\text { Series }\left(a_{k} x^{k}\right)_{n \in \mathbb{N}}
$$

inherit all the good properties of Lim_seq

- easy to write
- some rewritings without hypothesis

Use-case: Bessel Functions

$$
J_{n}=\left(\frac{x}{2}\right)^{n} \sum_{p=0}^{+\infty} \frac{(-1)^{p}}{p!(n+p)!}\left(\left(\frac{x}{2}\right)^{2}\right)^{p}
$$

Use-case: Bessel Functions

$$
J_{n}=\left(\frac{x}{2}\right)^{n} \sum_{p=0}^{+\infty} \frac{(-1)^{p}}{p!(n+p)!}\left(\left(\frac{x}{2}\right)^{2}\right)^{p}
$$

- $J_{n}^{\prime \prime}(x)+x \cdot J_{n}^{\prime}(x)+\left(x^{2}-n^{2}\right) \cdot J_{n}(x)=0$
- $J_{n+1}(x)=\frac{n \cdot J_{n}(x)}{x}-J_{n}^{\prime}(x)$
- $J_{n+1}(x)-J_{n-1}(x)=\frac{2 n}{x} J_{n}(x)$
- $J_{n+1}(x)-J_{n-1}(x)=-2 \cdot J_{n}^{\prime}(x)$

Use-case: Bessel Functions

$$
J_{n}=\left(\frac{x}{2}\right)^{n} \sum_{p=0}^{+\infty} \frac{(-1)^{p}}{p!(n+p)!}\left(\left(\frac{x}{2}\right)^{2}\right)^{p}
$$

- $J_{n}^{\prime \prime}(x)+x \cdot J_{n}^{\prime}(x)+\left(x^{2}-n^{2}\right) \cdot J_{n}(x)=0$
- $J_{n+1}(x)=\frac{n \cdot J_{n}(x)}{x}-J_{n}^{\prime}(x)$
- $J_{n+1}(x)-J_{n-1}(x)=\frac{2 n}{x} J_{n}(x)$
- $J_{n+1}(x)-J_{n-1}(x)=-2 \cdot J_{n}^{\prime}(x)$

Example: differential equation

$$
J_{n}^{\prime \prime}(x)+x \cdot J_{n}^{\prime}(x)+\left(x^{2}-n^{2}\right) J_{n}(x)=0
$$

Needed operations on power series:

Example: differential equation

with $a_{p}^{(n)}=\frac{(-1)^{p}}{p!(n+p)!}$ and $X=\left(\frac{X}{2}\right)^{2}$:
$\left(\left(\frac{x}{2}\right)^{n} \sum_{p=0}^{+\infty} a_{p}^{(n)} X^{p}\right)^{\prime \prime}+x \cdot\left(\left(\frac{x}{2}\right)^{n} \sum_{p=0}^{+\infty} a_{p}^{(n)} X^{p}\right)^{\prime}+\left(x^{2}-n^{2}\right)\left(\frac{x}{2}\right)^{n} \sum_{p=0}^{+\infty} a_{p}^{(n)} X^{p}=0$
Needed operations on power series:

- function to write power series

Example: differential equation

with $a_{p}^{(n)}=\frac{(-1)^{p}}{p!(n+p)!}$ and $X=\left(\frac{X}{2}\right)^{2}$:

$$
X\left(\sum_{p=0}^{+\infty} a_{p}^{(n)} X^{p}\right)^{\prime \prime}+(n+1)\left(\sum_{p=0}^{+\infty} a_{p}^{(n)} X^{p}\right)^{\prime}+\sum_{p=0}^{+\infty} a_{p}^{(n)} X^{p}=0
$$

Needed operations on power series:

- function to write power series

Example: differential equation

with $a_{p}^{(n)}=\frac{(-1)^{p}}{p!(n+p)!}$ and $X=\left(\frac{X}{2}\right)^{2}$:
$X \sum_{p=0}^{+\infty}\left((p+1)(p+2) a_{p+2}^{(n)} X^{p}\right)+(n+1) \sum_{p=0}^{+\infty}\left((p+1) a_{p+1}^{(n)} X^{p}\right)+\sum_{p=0}^{+\infty} a_{p}^{(n)} X^{p}=0$

Needed operations on power series:

- function to write power series
- differentiability

Example: differential equation

with $a_{p}^{(n)}=\frac{(-1)^{p}}{p!(n+p)!}$ and $X=\left(\frac{X}{2}\right)^{2}$:

$$
\sum_{p=0}^{+\infty}\left(p(p+1) a_{p+1}^{(n)} X^{p}\right)+(n+1) \sum_{p=0}^{+\infty}\left((p+1) a_{p+1}^{(n)} X^{p}\right)+\sum_{p=0}^{+\infty} a_{p}^{(n)} X^{p}=0
$$

Needed operations on power series:

- function to write power series
- differentiability
- variable multiplication

Example: differential equation

with $a_{p}^{(n)}=\frac{(-1)^{p}}{p!(n+p)!}$ and $X=\left(\frac{X}{2}\right)^{2}$:

$$
\sum_{p=0}^{+\infty}\left(p(p+1) a_{p+1}^{(n)}+(n+1)(p+1) a_{p+1}^{(n)}+a_{p}^{(n)}\right) X^{p}=0
$$

Needed operations on power series:

- function to write power series
- differentiability
- variable multiplication
- arithmetic operations

Example: differential equation

with $a_{p}^{(n)}=\frac{(-1)^{p}}{p!(n+p)!}$ and $X=\left(\frac{X}{2}\right)^{2}$:

$$
\forall p \in \mathbb{N}, \quad p(p+1) a_{p+1}^{(n)}+(n+1)(p+1) a_{p+1}^{(n)}+a_{p}^{(n)}=0
$$

Needed operations on power series:

- function to write power series
- differentiability
- variable multiplication
- arithmetic operations
- extensionality

Example: differential equation

with $a_{p}^{(n)}=\frac{(-1)^{p}}{p!(n+p)!}$ and $X=\left(\frac{X}{2}\right)^{2}$:

$$
\forall p \in \mathbb{N}, \quad a_{p+1}^{(n)}=\frac{-a_{p}^{(n)}}{(p+1)(n+p+1)}
$$

Needed operations on power series:

- function to write power series
- differentiability
- variable multiplication
- arithmetic operations
- extensionality

Unicity

$$
\begin{gathered}
x\left(\sum_{p=0}^{+\infty} a_{p}^{(n)} X^{p}\right)^{\prime \prime}+(n+1)\left(\sum_{p=0}^{+\infty} a_{p}^{(n)} X^{p}\right)^{\prime}+\sum_{p=0}^{+\infty} a_{p}^{(n)} X^{p}=0 \\
\forall p \in \mathbb{N}, \quad a_{p+1}^{(n)}=\frac{-a_{p}^{(n)}}{(p+1)(n+p+1)}
\end{gathered}
$$

Unicity

$$
\begin{gathered}
X\left(\sum_{p=0}^{+\infty} a_{p}^{(n)} X^{p}\right)^{\prime \prime}+(n+1)\left(\sum_{p=0}^{+\infty} a_{p}^{(n)} X^{p}\right)^{\prime}+\sum_{p=0}^{+\infty} a_{p}^{(n)} X^{p}=0 \\
\forall p \in \mathbb{N}, \quad a_{p+1}^{(n)}=\frac{-a_{p}^{(n)}}{(p+1)(n+p+1)}
\end{gathered}
$$

Operations on Series

- scalar multiplication:
$c \cdot \sum_{n \in \mathbb{N}} a_{n}=\sum_{n \in \mathbb{N}}\left(c \cdot a_{n}\right)$, without hypothesis.
- index shift: $\forall k \in \mathbb{N}^{*}, \quad \sum_{n=0}^{k-1} a_{n}+\sum_{n \in \mathbb{N}} a_{n+k}=\sum_{n \in \mathbb{N}} a_{n}$,

$$
\text { if } \sum a_{n} \text { are convergent or } \forall n<k, a_{n}=0 .
$$

Operations on Series

- scalar multiplication:
$c \cdot \sum_{n \in \mathbb{N}} a_{n}=\sum_{n \in \mathbb{N}}\left(c \cdot a_{n}\right)$, without hypothesis.
- index shift: $\forall k \in \mathbb{N}^{*}, \quad \sum_{n=0}^{k-1} a_{n}+\sum_{n \in \mathbb{N}} a_{n+k}=\sum_{n \in \mathbb{N}} a_{n}$,

$$
\text { if } \sum a_{n} \text { are convergent or } \forall n<k, a_{n}=0 .
$$

- addition: $\sum_{n \in \mathbb{N}} a_{n}+\sum_{n \in \mathbb{N}} b_{n}=\sum_{n \in \mathbb{N}}\left(a_{n}+b_{n}\right)$, if $\sum a_{n}$ and $\sum b_{n}$ are convergent.

Operations on Series

- scalar multiplication:
$c \cdot \sum_{n \in \mathbb{N}} a_{n}=\sum_{n \in \mathbb{N}}\left(c \cdot a_{n}\right)$, without hypothesis.
- index shift: $\forall k \in \mathbb{N}^{*}, \quad \sum_{n=0}^{k-1} a_{n}+\sum_{n \in \mathbb{N}} a_{n+k}=\sum_{n \in \mathbb{N}} a_{n}$,

$$
\text { if } \sum a_{n} \text { are convergent or } \forall n<k, a_{n}=0 \text {. }
$$

- addition: $\sum_{n \in \mathbb{N}} a_{n}+\sum_{n \in \mathbb{N}} b_{n}=\sum_{n \in \mathbb{N}}\left(a_{n}+b_{n}\right)$,
if $\sum a_{n}$ and $\sum b_{n}$ are convergent.
- multiplication: $\sum_{n \in \mathbb{N}} a_{n} \cdot \sum_{n \in \mathbb{N}} b_{n}=\sum_{n \in \mathbb{N}}\left(\sum_{k=0}^{n} a_{k} \cdot b_{n-k}\right)$,
if $\sum\left|a_{n}\right|$ and $\sum\left|b_{n}\right|$ are convergent.

Operations on Power Series

- scalar multiplication:

$$
c \cdot \sum_{n \in \mathbb{N}} a_{n} x^{n}=\sum_{n \in \mathbb{N}}\left(c \cdot a_{n}\right) x^{n}
$$

- multiplication by a variable:

No hypothesis

$$
\forall k \in \mathbb{N}, \quad x^{k} \cdot \sum_{n \in \mathbb{N}} a_{n} x^{n}=\sum_{n \in \mathbb{N}} a_{n-k} x^{n}
$$

- addition: $\sum_{n \in \mathbb{N}} a_{n} x^{n}+\sum_{n \in \mathbb{N}} b_{n} x^{n}=\sum_{n \in \mathbb{N}}\left(a_{n}+b_{n}\right) x^{n}$, if $\sum a_{n} x^{n}$ and $\sum b_{n} x^{n}$ are convergent.
- multiplication: $\sum_{n \in \mathbb{N}} a_{n} x^{n} \cdot \sum_{n \in \mathbb{N}} b_{n} x^{n}=\sum_{n \in \mathbb{N}}\left(\sum_{k=0}^{n} a_{k} \cdot b_{n-k}\right) x^{n}$, if $\sum\left|a_{n} x^{n}\right|$ and $\sum\left|b_{n} x^{n}\right|$ are convergent.

Some features related to power series

- Convergence circle
- Differentiability
- Sequences of functions

Convergence circle

$$
\mathcal{C}_{a}=\sup \left\{r \in \mathbb{R}\left|\sum\right| a_{n} r^{n} \mid \text { is convergent }\right\} \in \overline{\mathbb{R}}
$$

Convergence circle

$$
\mathcal{C}_{a}=\sup \left\{r \in \mathbb{R}\left|\sum\right| a_{n} r^{n} \mid \text { is convergent }\right\} \in \overline{\mathbb{R}}
$$

Formally proved:

- Equality with $\sup \left\{r \in \mathbb{R}\left|\left|a_{n} r^{n}\right|\right.\right.$ is bounded $\}$
- Compatibility with operations (e.g.: $\mathcal{C}_{a+b} \geq \min \left\{\mathcal{C}_{a}, \mathcal{C}_{b}\right\}$)

Convergence circle

$$
\mathcal{C}_{a}=\sup \left\{r \in \mathbb{R}\left|\sum\right| a_{n} r^{n} \mid \text { is convergent }\right\} \in \overline{\mathbb{R}}
$$

Formally proved:

- Equality with $\sup \left\{r \in \mathbb{R}\left|\left|a_{n} r^{n}\right|\right.\right.$ is bounded $\}$
- Compatibility with operations (e.g.: $\left.\mathcal{C}_{a+b} \geq \min \left\{\mathcal{C}_{a}, \mathcal{C}_{b}\right\}\right)$
- If $|x|<\mathcal{C}_{a}$, then $\sum a_{n} x^{n}$ is absolutely convergent
- If $|x|>\mathcal{C}_{a}$, then $\sum a_{n} x^{n}$ is strongly divergent

Differentiability

To write

$$
\text { If }|x|<\mathcal{C}_{a} \text {, then }\left(\sum_{n \in \mathbb{N}} a_{n} x^{n}\right)^{\prime}=\sum_{n \in \mathbb{N}}(n+1) a_{n+1} x^{n}
$$

using the Coq standard library:

```
Lemma Derive_PSeries (a : nat -> R) (cv_a : R) :
    forall (PS : forall x : R, Rabs x < cv_a -> {l : R | Pser a x l})
        (PS' : forall x : R, Rabs x < cv_a ->
            {l : R | Pser (fun n : nat => INR (S n) * a (S n)) x l})
        (pr : forall x : R, Rabs x < cv_a ->
            derivable_pt (fun y : R =>
                match Rlt_dec (Rabs y) cv_a with
                | left Hy => projT1 (PS y Hy)
                | right _ => 0
                end) x)
        (x : R) (Hx : Rabs x < cv_a),
    derive_pt (fun y : R =>
        match Rlt_dec (Rabs y) cv_a with
        | left Hy => projT1 (PS y Hy)
        | right _ => 0
        end) x (pr x Hx) = projT1 (PS' x Hx)
```


Differentiability

To write

$$
\text { If }|x|<\mathcal{C}_{a} \text {, then }\left(\sum_{n \in \mathbb{N}} a_{n} x^{n}\right)^{\prime}=\sum_{n \in \mathbb{N}}(n+1) a_{n+1} x^{n}:
$$

using the Coquelicot library:
Lemma Derive_PSeries (a : nat -> R) :
forall x : R, Rbar_lt (Rabs x) (CV_circle a) ->
Derive (PSeries a) x
$=$ PSeries (fun n : nat $=>$ INR ($\mathrm{S} n$) * a (S n)) x .

Differentiability

To write

$$
\text { If }|x|<\mathcal{C}_{a} \text {, then }\left(\sum_{n \in \mathbb{N}} a_{n} x^{n}\right)^{(k)}=\sum_{n \in \mathbb{N}} \frac{(n+k)!}{n!} a_{n+k} x^{n}:
$$

using the Coquelicot library:
Lemma Derive_n_PSeries (k : nat) (a : nat -> R) : forall x : R, Rbar_lt (Rabs x) (CV_circle a) ->

Derive_n (PSeries a) n x
= PSeries (fun n : nat =>
(INR (fact $(\mathrm{n}+\mathrm{k})) / \operatorname{INR}(\mathrm{fact} \mathrm{n})) * a(\mathrm{n}+\mathrm{k})) \mathrm{x}$.

Sequences of function

Useful for:

- Power series $\sum a_{n} x^{n}$
- Fourier series $\sum a_{n} \cos (n x)+b_{n} \sin (n x)$
- ...

Sequences of function

Useful for:

- Power series $\sum a_{n} x^{n}$
- Fourier series $\sum a_{n} \cos (n x)+b_{n} \sin (n x)$
- ...

Formally proved:

- limits:
$\forall\left(f_{n}\right)_{n \in \mathbb{N}}$ a sequence of functions, D an open subset of \mathbb{R}, if $\left(f_{n}\right)_{n \in \mathbb{N}}$ is uniformly convergent and $\forall x \in D, \forall n \in \mathbb{N}, \lim _{t \rightarrow x} f(t)$ exists, then

$$
\forall x \in D, \lim _{t \rightarrow x}\left(\lim _{n \rightarrow+\infty}\left(f_{n}(t)\right)\right)=\lim _{n \rightarrow+\infty}\left(\lim _{t \rightarrow x} f_{n}(t)\right)
$$

Sequences of function

Useful for:

- Power series $\sum a_{n} x^{n}$
- Fourier series $\sum a_{n} \cos (n x)+b_{n} \sin (n x)$
- ...

Formally proved:

- limits:
$\forall\left(f_{n}\right)_{n \in \mathbb{N}}$ a sequence of functions, D an open subset of \mathbb{R}, if $\left(f_{n}\right)_{n \in \mathbb{N}}$ is uniformly convergent and $\forall x \in D, \forall n \in \mathbb{N}, \lim _{t \rightarrow x} f(t)$ exists, then

$$
\forall x \in D, \lim _{t \rightarrow x}\left(\lim _{n \rightarrow+\infty}\left(f_{n}(t)\right)\right)=\lim _{n \rightarrow+\infty}\left(\lim _{t \rightarrow x} f_{n}(t)\right)
$$

- continuity
- differentiability

Power series in other proof assistants

C-CoRN, HOL Light, Isabelle/HOL, PVS:

- two different notions of finite and infinite convergence circle
- series of real numbers provide
- various convergence theorems
- sequences of functions provide
- differentiability
- integrability

Power series in other proof assistants

C-CoRN, HOL Light, Isabelle/HOL, PVS:

- two different notions of finite and infinite convergence circle
- series of real numbers provide
- various convergence theorems
- sequences of functions provide
- differentiability
- integrability
but results are not explicitly power series

Conclusion

New power series for Coq:

- easy to use:

$$
\begin{cases}\mathcal{C}_{J_{n}}=+\infty & : 41 \mathrm{LoC} \\ J_{n+1}(x)+J_{n-1}(x)=\frac{2 n}{x} J_{n}(x) & : 35 \mathrm{LoC} \\ x^{2} \cdot J_{n}^{\prime \prime}(x)+x \cdot J_{n}^{\prime}(x)+\left(x^{2}-n^{2}\right) \cdot J_{n}(x)=0 & : 94 \mathrm{LoC}\end{cases}
$$

Conclusion

New power series for Coq:

- easy to use:

$$
\begin{cases}\mathcal{C}_{J_{n}}=+\infty & : 41 \mathrm{LoC} \\ J_{n+1}(x)+J_{n-1}(x)=\frac{2 n}{x} J_{n}(x) & : 35 \mathrm{LoC} \\ x^{2} \cdot J_{n}^{\prime \prime}(x)+x \cdot J_{n}^{\prime}(x)+\left(x^{2}-n^{2}\right) \cdot J_{n}(x)=0 & : 94 \mathrm{LoC}\end{cases}
$$

- with a proper notion of convergence circle

Conclusion

New power series for Coq:

- easy to use:

$$
\begin{cases}\mathcal{C}_{J_{n}}=+\infty & : 41 \mathrm{LoC} \\ J_{n+1}(x)+J_{n-1}(x)=\frac{2 n}{x} J_{n}(x) & : 35 \mathrm{LoC} \\ x^{2} \cdot J_{n}^{\prime \prime}(x)+x \cdot J_{n}^{\prime}(x)+\left(x^{2}-n^{2}\right) \cdot J_{n}(x)=0 & : 94 \mathrm{LoC}\end{cases}
$$

- with a proper notion of convergence circle

	Nb. Definitions	Nb. Lemmas	Nb. Lines
Series	3	47	764
PSeries	13	70	1674

Available at: http://coquelicot.saclay.inria.fr/

Perspectives

- About Power Series:
- Composition
- Quotient
- Automation

Perspectives

- About Power Series:
- Composition
- Quotient
- Automation
- About Real Analysis:
- Left and right limits
- Equivalent functions
- Automation for limits, integrals and equivalents

Perspectives

- About Power Series:
- Composition
- Quotient
- Automation
- About Real Analysis:
- Left and right limits
- Equivalent functions
- Automation for limits, integrals and equivalents
- To go further: complex numbers

Build a user-friendly library of real analysis in Coq.

(2)]

Any questions?

http://coquelicot.saclay.inria.fr/

Bibliography

Sylvie Boldo and Catherine Lelay and Guillaume Melquiond Improving Real Analysis in Coq: a User-Friendly Approach to Integrals and Derivatives
Proceedings of the Second International Conference on Certified Programs and Proofs, 289-304, 2012
R Yves Bertot
www-sop.inria.fr/members/Yves.Bertot/proofs.html
E Catherine Lelay www.Iri.fr/~Ielay/

Limits' troubles

Definition Lim_seq $\left(u_{n}\right)_{n \in \mathbb{N}}:=\frac{\overline{\lim }\left(u_{n}\right)+\underline{\lim }\left(u_{n}\right)}{2} \in \overline{\mathbb{R}}$

- Lim_seq $(-1)^{n}=0$
- $\operatorname{Lim}_{x \rightarrow 0} f c t x^{-1}=+\infty$

As on paper: can be written, but no meaning without proof of convergence

Left and right limits

Actual alternative on left and right limits:

$$
\lim _{x \rightarrow 0^{+}} x^{-1}=\underset{x \rightarrow 0}{\operatorname{Lim}_{-} f c t}|x|^{-1} \text { and } \lim _{x \rightarrow 0^{+}} x^{-1}=\underset{x \rightarrow 0}{\operatorname{Lim} f c t}(-|x|)^{-1}
$$

