Library Coq.Init.Specif


Basic specifications : sets that may contain logical information

Set Implicit Arguments.

Require Import Notations.
Require Import Datatypes.
Require Import Logic.

Subsets and Sigma-types
(sig A P), or more suggestively {x:A | P x}, denotes the subset of elements of the type A which satisfy the predicate P. Similarly (sig2 A P Q), or {x:A | P x & Q x}, denotes the subset of elements of the type A which satisfy both P and Q.

Inductive sig (A:Type) (P:A -> Prop) : Type :=
    exist : forall x:A, P x -> sig P.

Inductive sig2 (A:Type) (P Q:A -> Prop) : Type :=
    exist2 : forall x:A, P x -> Q x -> sig2 P Q.

(sigT A P), or more suggestively {x:A & (P x)} is a Sigma-type. Similarly for (sigT2 A P Q), also written {x:A & (P x) & (Q x)}.

Inductive sigT (A:Type) (P:A -> Type) : Type :=
    existT : forall x:A, P x -> sigT P.

Inductive sigT2 (A:Type) (P Q:A -> Type) : Type :=
    existT2 : forall x:A, P x -> Q x -> sigT2 P Q.



Notation "{ x | P }" := (sig (fun x => P)) : type_scope.
Notation "{ x | P & Q }" := (sig2 (fun x => P) (fun x => Q)) : type_scope.
Notation "{ x : A | P }" := (sig (fun x:A => P)) : type_scope.
Notation "{ x : A | P & Q }" := (sig2 (fun x:A => P) (fun x:A => Q)) :
  type_scope.
Notation "{ x : A & P }" := (sigT (fun x:A => P)) : type_scope.
Notation "{ x : A & P & Q }" := (sigT2 (fun x:A => P) (fun x:A => Q)) :
  type_scope.

Add Printing Let sig.
Add Printing Let sig2.
Add Printing Let sigT.
Add Printing Let sigT2.

Projections of sig
An element y of a subset {x:A | (P x)} is the pair of an a of type A and of a proof h that a satisfies P. Then (proj1_sig y) is the witness a and (proj2_sig y) is the proof of (P a)

Section Subset_projections.

  Variable A : Type.
  Variable P : A -> Prop.

  Definition proj1_sig (e:sig P) := match e with
                                    | exist a b => a
                                    end.

  Definition proj2_sig (e:sig P) :=
    match e return P (proj1_sig e) with
    | exist a b => b
    end.

End Subset_projections.

Projections of sigT
An element x of a sigma-type {y:A & P y} is a dependent pair made of an a of type A and an h of type P a. Then, (projT1 x) is the first projection and (projT2 x) is the second projection, the type of which depends on the projT1.

Section Projections.

  Variable A : Type.
  Variable P : A -> Type.

  Definition projT1 (x:sigT P) : A := match x with
                                      | existT a _ => a
                                      end.
  Definition projT2 (x:sigT P) : P (projT1 x) :=
    match x return P (projT1 x) with
    | existT _ h => h
    end.

End Projections.

sigT of a predicate is equivalent to sig

Lemma sig_of_sigT : forall (A:Type) (P:A->Prop), sigT P -> sig P.

Lemma sigT_of_sig : forall (A:Type) (P:A->Prop), sig P -> sigT P.

Coercion sigT_of_sig : sig >-> sigT.
Coercion sig_of_sigT : sigT >-> sig.

sumbool is a boolean type equipped with the justification of their value

Inductive sumbool (A B:Prop) : Set :=
  | left : A -> {A} + {B}
  | right : B -> {A} + {B}
 where "{ A } + { B }" := (sumbool A B) : type_scope.

Add Printing If sumbool.


sumor is an option type equipped with the justification of why it may not be a regular value

Inductive sumor (A:Type) (B:Prop) : Type :=
  | inleft : A -> A + {B}
  | inright : B -> A + {B}
 where "A + { B }" := (sumor A B) : type_scope.

Add Printing If sumor.


Various forms of the axiom of choice for specifications

Section Choice_lemmas.

  Variables S S' : Set.
  Variable R : S -> S' -> Prop.
  Variable R' : S -> S' -> Set.
  Variables R1 R2 : S -> Prop.

  Lemma Choice :
   (forall x:S, {y:S' | R x y}) -> {f:S -> S' | forall z:S, R z (f z)}.

  Lemma Choice2 :
   (forall x:S, {y:S' & R' x y}) -> {f:S -> S' & forall z:S, R' z (f z)}.

  Lemma bool_choice :
   (forall x:S, {R1 x} + {R2 x}) ->
     {f:S -> bool | forall x:S, f x = true /\ R1 x \/ f x = false /\ R2 x}.

End Choice_lemmas.

Section Dependent_choice_lemmas.

  Variables X : Set.
  Variable R : X -> X -> Prop.

  Lemma dependent_choice :
    (forall x:X, {y | R x y}) ->
    forall x0, {f : nat -> X | f O = x0 /\ forall n, R (f n) (f (S n))}.

End Dependent_choice_lemmas.

A result of type (Exc A) is either a normal value of type A or an error :
Inductive Exc [A:Type] : Type := value : A->(Exc A) | error : (Exc A).
It is implemented using the option type.

Definition Exc := option.
Definition value := Some.
Definition error := @None.


Definition except := False_rec.

Theorem absurd_set : forall (A:Prop) (C:Set), A -> ~ A -> C.

Hint Resolve left right inleft inright: core v62.
Hint Resolve exist exist2 existT existT2: core.


Notation sigS := sigT (compat "8.2").
Notation existS := existT (compat "8.2").
Notation sigS_rect := sigT_rect (compat "8.2").
Notation sigS_rec := sigT_rec (compat "8.2").
Notation sigS_ind := sigT_ind (compat "8.2").
Notation projS1 := projT1 (compat "8.2").
Notation projS2 := projT2 (compat "8.2").

Notation sigS2 := sigT2 (compat "8.2").
Notation existS2 := existT2 (compat "8.2").
Notation sigS2_rect := sigT2_rect (compat "8.2").
Notation sigS2_rec := sigT2_rec (compat "8.2").
Notation sigS2_ind := sigT2_ind (compat "8.2").