# Library AILS.pi_ineq

Require Import Reals.

Definition PI_lb : R := 3%R.
Definition PI_ub : R := 4%R.

Lemma PI_approx : (PI_lb < PI < PI_ub)%R.
Proof with trivial.
split...
elim (PI_ineq 3); intros H0 _;
cut (sum_f_R0 (tg_alt PI_tg) (S (2 × 3)) = (33976 / 45045)%R)...
intro; rewrite H in H0; apply Rmult_lt_reg_l with (/ 4)%R...
apply Rinv_0_lt_compat; prove_sup...
unfold PI_lb in |- *; simpl in |- *; rewrite <- (Rmult_comm PI);
apply Rlt_le_trans with (33976 / 45045)%R...
apply Rmult_lt_reg_l with 4%R...
prove_sup...
rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym...
rewrite Rmult_1_l; apply Rmult_lt_reg_l with 45045%R...
prove_sup...
pattern 45045%R at 1 in |- *; rewrite <- Rmult_comm; unfold Rdiv in |- *;
repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym...
prove_sup...
discrR...
discrR...
unfold tg_alt, PI_tg in |- *;
replace
(sum_f_R0 (fun i : nat ⇒ ((-1) ^ i × / INR (2 × i + 1))%R) (S (2 × 3)))
with (1 - / 3 + / 5 - / 7 + / 9 - / 11 + / 13 - / 15)%R...
assert (H : 45045%R 0%R)...
discrR...
apply Rmult_eq_reg_l with 45045%R...
unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 45045));
rewrite <- (Rmult_assoc 45045 (/ 45045) 33976); rewrite <- Rinv_r_sym...
rewrite Rmult_1_l; replace 45045%R with (3 × 3 × 5 × 7 × 11 × 13)%R;
[ idtac | Rcompute ]...
replace 15%R with (3 × 5)%R; [ idtac | Rcompute ]...
replace 9%R with (3 × 3)%R; [ idtac | Rcompute ]...
repeat rewrite Rinv_mult_distr; try discrR...
set (x := 13%R); set (y := 11%R); set (z := 7%R); set (t := 5%R);
set (u := 3%R);
replace
(u × u × t × z × y × x ×
(1 - / u + / t - / z + / u × / u - / y + / x - / u × / t))%R with
(u × u × t × z × y × x × 1 - u × t × z × y × x × (u × / u) +
u × u × z × y × x × (t × / t) - u × u × t × y × x × (z × / z) +
t × z × y × x × (u × / u) × (u × / u) - u × u × t × z × x × (y × / y) +
u × u × t × z × y × (x × / x) - u × z × y × x × (u × / u) × (t × / t))%R;
[ idtac | ring ]...
repeat rewrite <- Rinv_r_sym; try unfold x, y, z, t, u in |- *; discrR...
repeat rewrite Rmult_1_r; Rcompute...
simpl in |- *; rewrite Rinv_1; repeat rewrite Rmult_1_r;
unfold Rminus in |- ×...
replace (2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1)%R with 15%R;
[ idtac | ring ]...
replace (2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1)%R with 13%R;
[ idtac | ring ]...
replace (2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1)%R with 11%R; [ idtac | ring ]...
replace (2 + 1 + 1 + 1 + 1 + 1 + 1 + 1)%R with 9%R; [ idtac | ring ]...
replace (2 + 1 + 1 + 1 + 1 + 1)%R with 7%R; [ idtac | ring ]...
replace (2 + 1 + 1 + 1)%R with 5%R; [ idtac | ring ]...
replace (2 + 1)%R with 3%R; [ idtac | rewrite Rplus_comm ]...
repeat rewrite Rplus_assoc; apply Rplus_eq_compat_l...
repeat (rewrite Rmult_opp_opp; rewrite Rmult_1_r); repeat rewrite Rmult_1_r;
repeat (rewrite Rmult_opp_opp; rewrite Rmult_1_r);
repeat rewrite Rmult_1_r; repeat (rewrite Rmult_opp_opp; rewrite Rmult_1_r);
repeat rewrite Rmult_1_r; repeat rewrite Rmult_1_l;
repeat rewrite Ropp_mult_distr_l_reverse; repeat rewrite Rmult_1_l...
elim (PI_ineq 1); intros _ H0; unfold tg_alt, PI_tg in H0; simpl in H0;
rewrite Rinv_1 in H0; repeat rewrite Rmult_1_r in H0...
cut ((2 + 1 + 1 + 1)%R = 5%R); [ intro; rewrite H in H0; clear H | ring ]...
cut ((2 + 1)%R = 3%R); [ intro; rewrite H in H0; clear H | ring ]...
rewrite Rmult_opp_opp in H0; repeat rewrite Rmult_1_l in H0;
apply Rmult_lt_reg_l with (/ 4)%R...
apply Rinv_0_lt_compat; prove_sup...
rewrite <- (Rmult_comm PI); apply Rle_lt_trans with (1 + -1 × / 3 + / 5)%R...
unfold PI_ub in |- *; simpl in |- *; rewrite <- Rinv_l_sym;
[ idtac | discrR ]...
pattern 1%R at 11 in |- *; rewrite <- Rplus_0_r; repeat rewrite Rplus_assoc;
apply Rplus_lt_compat_l; rewrite Ropp_mult_distr_l_reverse;
rewrite Rmult_1_l; apply Rplus_lt_reg_r with (/ 3)%R;
rewrite Rplus_0_r; rewrite <- Rplus_assoc; rewrite Rplus_opp_r;
rewrite Rplus_0_l; apply Rinv_lt_contravar; prove_sup...
Qed.