Library Algebra.Module_facts

Set Automatic Coercions Import.
Set Implicit Arguments.
Unset Strict Implicit.
Require Export Module_cat.
Require Export Abelian_group_facts.
Section Lemmas.
Variable R : RING.
Variable Mod : MODULE R.

Lemma MODULE_comp :
forall (a b : R) (x y : Mod),
Equal a b -> Equal x y -> Equal (module_mult a x) (module_mult b y).
intros a b x y H' H'0; try assumption.
apply Trans with (module_mult a y); unfold module_mult in |- *.
apply Ap_comp; auto with algebra.
apply Ap_comp; auto with algebra.
Qed.

Lemma MODULE_assoc :
forall (a b : R) (x : Mod),
Equal (module_mult (ring_mult a b) x) (module_mult a (module_mult b x)).
exact (operation_assoc (module_op Mod)).
Qed.

Lemma MODULE_dist_r :
forall (a b : R) (x : Mod),
Equal (module_mult (sgroup_law R a b) x)
(sgroup_law Mod (module_mult a x) (module_mult b x)).
exact (module_op_lin_left_prf Mod).
Qed.

Lemma MODULE_dist_l :
forall (a : R) (x y : Mod),
Equal (module_mult a (sgroup_law Mod x y))
(sgroup_law Mod (module_mult a x) (module_mult a y)).
exact (module_op_lin_right_prf Mod).
Qed.

Lemma MODULE_unit_l : forall x : Mod, Equal (module_mult (ring_unit R) x) x.
exact (operation_unit (module_op Mod)).
Qed.
Hint Resolve MODULE_comp MODULE_dist_r MODULE_dist_l MODULE_assoc
MODULE_unit_l: algebra.

Lemma MODULE_absorbant_l :
forall x : Mod, Equal (module_mult (monoid_unit R) x) (monoid_unit Mod).
intros x; try assumption.
apply GROUP_reg_left with (module_mult (monoid_unit R) x); auto with algebra.
apply
Trans with (module_mult (sgroup_law R (monoid_unit R) (monoid_unit R)) x);
auto with algebra.
apply Trans with (module_mult (monoid_unit R) x); auto with algebra.
Qed.

Lemma MODULE_absorbant_r :
forall a : R, Equal (module_mult a (monoid_unit Mod)) (monoid_unit Mod).
intros a; try assumption.
apply GROUP_reg_left with (module_mult a (monoid_unit (module_carrier Mod)));
auto with algebra.
apply
Trans
with (module_mult a (sgroup_law Mod (monoid_unit Mod) (monoid_unit Mod)));
auto with algebra.
apply Trans with (module_mult a (monoid_unit Mod)); auto with algebra.
Qed.

Lemma MODULE_mult_op_r :
forall (a : R) (x : Mod),
Equal (module_mult a (group_inverse Mod x))
(group_inverse Mod (module_mult a x)).
intros a x; try assumption.
apply Sym.
apply GROUP_law_inverse.
apply Trans with (module_mult a (sgroup_law Mod x (group_inverse Mod x)));
auto with algebra.
apply Trans with (module_mult a (monoid_unit Mod)); auto with algebra.
apply MODULE_absorbant_r.
Qed.

Lemma MODULE_mult_op_l :
forall (a : R) (x : Mod),
Equal (module_mult (group_inverse R a) x)
(group_inverse Mod (module_mult a x)).
intros a x; try assumption.
apply Sym.
apply GROUP_law_inverse.
apply Trans with (module_mult (sgroup_law R a (group_inverse R a)) x);
auto with algebra.
apply Trans with (module_mult (monoid_unit R) x); auto with algebra.
apply MODULE_absorbant_l.
Qed.
Variable Mod' : MODULE R.
Variable f : Hom Mod Mod'.

Lemma MODULE_hom_prop :
forall (a : R) (x : Mod), Equal (f (module_mult a x)) (module_mult a (f x)).
case f; auto with algebra.
Qed.
End Lemmas.
Hint Resolve MODULE_comp MODULE_assoc MODULE_dist_r MODULE_dist_l
MODULE_unit_l MODULE_absorbant_l MODULE_absorbant_r MODULE_mult_op_l
MODULE_mult_op_r MODULE_hom_prop: algebra.