Library Buchberger.Monomials

Section Monomials.
Require Import Arith.
Require Import Compare.
Require Import Compare_dec.
Require Import Peano_dec.

Inductive mon : nat Set :=
| n_0 : mon 0
| c_n : d : nat, nat mon d mon (S d).

Definition pmon1 : d : nat, mon d nat.
intros d m; case m.
exact 0.
intros d' n p; exact n.
Defined.

Definition pmon2 : d : nat, mon d mon (pred d).
intros d m; case m.
exact n_0.
intros d' n p; exact p.
Defined.

Definition recomp : d : nat, d 0 mon d mon d.
intros d; case d.
intros H'; apply False_rec; case H'; auto.
intros d' H m; exact (c_n d' (pmon1 (S d') m) (pmon2 (S d') m)).

Defined.

Lemma recomp_ok : (d : nat) (h : d 0) (m : mon d), recomp d h m = m.
intros d h m.
generalize h; clear h.
elim m.
intros h; elim h; auto.
intros; simpl in |- *; unfold recomp in |- *; auto.
Qed.

Lemma proj_ok :
(d : nat) (m : mon (S d)), c_n d (pmon1 (S d) m) (pmon2 (S d) m) = m.
intros d m; cut (S d 0); auto.
intros H; cut (recomp (S d) H m = m); auto.
apply recomp_ok; auto.
Qed.

Definition gen_mon : d : nat, nat mon d.
intros d; elim d.
intros n; exact n_0.
intros n H' n'; case n'.
exact (c_n n 1 (H' n)).
intros n''; exact (c_n n 0 (H' n'')).
Defined.

Definition mult_mon : d : nat, mon d mon d mon d.
intros d; elim d.
intros H' H'0; exact n_0.
intros n Rec S1 S2.
exact
(c_n n (pmon1 (S n) S1 + pmon1 (S n) S2)
(Rec (pmon2 (S n) S1) (pmon2 (S n) S2))).
Defined.

Theorem mult_mon_com :
(d : nat) (a b : mon d), mult_mon d a b = mult_mon d b a.
intros d; elim d; simpl in |- *; auto.
intros n H' a b.
rewrite (H' (pmon2 (S n) a) (pmon2 (S n) b)); auto.
rewrite (plus_comm (pmon1 (S n) a) (pmon1 (S n) b)); auto.
Qed.

Theorem mult_mon_assoc :
(d : nat) (a b c : mon d),
mult_mon d a (mult_mon d b c) = mult_mon d (mult_mon d a b) c.
intros d; elim d; simpl in |- *; auto.
intros n H' a b c.
rewrite (H' (pmon2 (S n) a) (pmon2 (S n) b) (pmon2 (S n) c)); auto.
rewrite (plus_assoc (pmon1 (S n) a) (pmon1 (S n) b) (pmon1 (S n) c)); auto.
Qed.

Definition zero_mon : d : nat, mon d.
intros d; elim d.
exact n_0.
intros n Rec; exact (c_n n 0 Rec).
Defined.

Theorem mult_mon_zero_r :
(d : nat) (a : mon d), mult_mon d a (zero_mon d) = a.
intros d a; elim a; auto.
simpl in |- ×.
intros d0 n m H'; rewrite H'; auto.
rewrite (plus_comm n 0); auto.
Qed.

Theorem mult_mon_zero_l :
(d : nat) (a : mon d), mult_mon d (zero_mon d) a = a.
intros d a; elim a; auto.
simpl in |- ×.
intros d0 n m H'; rewrite H'; auto.
Qed.

Inductive mdiv : d : nat, mon d mon d Prop :=
| mdiv_nil : mdiv 0 n_0 n_0
| mdiv_cons :
(d : nat) (v v' : mon d) (n n' : nat),
n n' mdiv d v v' mdiv (S d) (c_n d n v) (c_n d n' v').
Hint Resolve mdiv_nil mdiv_cons.

Lemma mdiv_proj :
(d : nat) (m m' : mon (S d)),
pmon1 (S d) m pmon1 (S d) m'
mdiv d (pmon2 (S d) m) (pmon2 (S d) m') mdiv (S d) m m'.
intros d m m' H' H'0; rewrite <- (proj_ok d m); rewrite <- (proj_ok d m');
auto.
Qed.
Require Import Relation_Definitions.
Require Import Eqdep.

Lemma mdiv_trans : d : nat, transitive (mon d) (mdiv d).
intros d; elim d; unfold transitive in |- *; auto.
intros x y z mdiv_xy; inversion mdiv_xy.
intros mdiv_yz; inversion mdiv_yz; auto.
rewrite <- (inj_pair2 nat (fun x : natmon x) 0 n_0 z); auto.
rewrite <- (inj_pair2 nat (fun x : natmon x) 0 n_0 x); auto.
intros n Rec x y z mdiv_xy; inversion mdiv_xy.
rewrite <- (inj_pair2 nat (fun x : natmon x) (S n) (c_n n n' v') y); auto.
rewrite <- (inj_pair2 nat (fun x : natmon x) (S n) (c_n n n0 v) x); auto.
intros mdiv_yz; inversion mdiv_yz; auto.
rewrite <- (inj_pair2 nat (fun x : natmon x) (S n) (c_n n n'0 v'0) z);
auto.
apply mdiv_cons; auto.
apply le_trans with (m := n'); auto.
apply Rec with (y := v0); auto.
rewrite (inj_pair2 nat (fun x : natmon x) n v0 v'); auto.
Qed.

Definition div_mon : d : nat, mon d mon d mon d.
intros d; elim d.
intros H' H'0; exact n_0.
intros n Rec S1 S2.
exact
(c_n n (pmon1 (S n) S1 - pmon1 (S n) S2)
(Rec (pmon2 (S n) S1) (pmon2 (S n) S2))).
Defined.

Theorem mdiv_div :
(d : nat) (a b : mon d),
mdiv d b a mult_mon d (div_mon d a b) b = a.
intros d a b H'; elim H'; simpl in |- *; auto.
intros d0 v v' n n' H'0 H'1 H'2.
rewrite (plus_comm (n' - n) n).
rewrite <- (le_plus_minus n n'); auto.
rewrite H'2; auto.
Qed.

Definition div_mon_clean : d : nat, mon d mon d mon d × bool.
intros d; elim d.
intros H' H'0; exact (n_0, true).
intros n Rec S1 S2.
case (le_lt_dec (pmon1 (S n) S2) (pmon1 (S n) S1)).
case (Rec (pmon2 (S n) S1) (pmon2 (S n) S2)).
intros res b H'1; exact (c_n n (pmon1 (S n) S1 - pmon1 (S n) S2) res, b).
intros H'; exact (S1, false).
Defined.

Definition is_nil : d : nat, mon d mon d.
intros d; case d.
intros H'; exact n_0.
intros n H'; exact H'.
Defined.

Theorem is_nil_id : (d : nat) (a : mon d), a = is_nil d a.
intros d a; elim a; simpl in |- *; auto.
Qed.

Theorem mon_0 : a : mon 0, a = n_0.
intros a; generalize (is_nil_id 0 a); simpl in |- *; auto.
Qed.
Hint Resolve mon_0.

Theorem eqmon_dec : (d : nat) (x y : mon d), {x = y} + {x y}.
intros d; elim d; auto.
intros x y; left.
rewrite (mon_0 x); rewrite (mon_0 y); auto.
intros n H' x y.
elim (eq_nat_dec (pmon1 (S n) x) (pmon1 (S n) y)); intros H'2.
elim (H' (pmon2 (S n) x) (pmon2 (S n) y)); intros H'3.
left.
rewrite <- (proj_ok n x).
rewrite <- (proj_ok n y).
rewrite H'3; rewrite H'2; auto.
right; rewrite <- (proj_ok n x); rewrite <- (proj_ok n y); red in |- *;
intros H'0.
apply H'3.
change
(pmon2 (S n) (c_n n (pmon1 (S n) x) (pmon2 (S n) x)) =
pmon2 (S n) (c_n n (pmon1 (S n) y) (pmon2 (S n) y)) :>
mon n) in |- ×.
rewrite H'0; auto.
right; red in |- *; rewrite <- (proj_ok n x); rewrite <- (proj_ok n y);
intros H'0; apply H'2; injection H'0; auto.
Qed.

Theorem mult_div_com :
(d : nat) (a b : mon d), div_mon d (mult_mon d a b) b = a.
intros d; elim d; simpl in |- *; auto.
intros n H' a b.
rewrite (H' (pmon2 (S n) a) (pmon2 (S n) b)); auto.
rewrite (plus_comm (pmon1 (S n) a) (pmon1 (S n) b)).
rewrite (minus_plus (pmon1 (S n) b) (pmon1 (S n) a)); auto.
apply proj_ok; auto.
Qed.

Theorem mult_div_id :
(d : nat) (a : mon d), div_mon d a a = zero_mon d.
intros d a; elim a; simpl in |- *; auto.
intros d0 n m H'; rewrite H'; auto.
rewrite <- (minus_n_n n); auto.
Qed.

Let gb : d : nat, mon d × bool bool.
intros d H'; case H'; auto.
Defined.

Let gm : d : nat, mon d × bool mon d.
intros d H'; case H'; auto.
Defined.

Theorem minus_lt_0 : m n : nat, n < m n - m = 0.
intros m; elim m; simpl in |- *; auto.
intros n H; absurd (n < 0); auto with arith.
intros n H' n0; case n0; simpl in |- *; auto with arith.
Qed.

Theorem div_clean_dec2 :
(d : nat) (a b : mon d),
gb d (div_mon_clean d a b) = false mult_mon d (div_mon d a b) b a.
intros d; elim d; simpl in |- *; auto.
intros a H' H'0; inversion H'0; auto.
intros n H' a b.
case (le_lt_dec (pmon1 (S n) b) (pmon1 (S n) a)); simpl in |- *; auto.
intros l; generalize (H' (pmon2 (S n) a) (pmon2 (S n) b)).
case (div_mon_clean n (pmon2 (S n) a) (pmon2 (S n) b)); simpl in |- *; auto.
intros H'0 b0 H'1 H'2; red in |- *; intros H'3.
lapply H'1; [ intros H'4; apply H'4; clear H'1 | clear H'1 ]; auto.
change
(pmon2 (S n)
(c_n n (pmon1 (S n) a - pmon1 (S n) b + pmon1 (S n) b)
(mult_mon n (div_mon n (pmon2 (S n) a) (pmon2 (S n) b))
(pmon2 (S n) b))) = pmon2 (S n) a :>mon n)
in |- ×.
rewrite H'3; auto.
intros H'0 H'1; red in |- *; intros H'2;
absurd (pmon1 (S n) a - pmon1 (S n) b + pmon1 (S n) b = pmon1 (S n) a);
auto.
2: change
(pmon1 (S n)
(c_n n (pmon1 (S n) a - pmon1 (S n) b + pmon1 (S n) b)
(mult_mon n (div_mon n (pmon2 (S n) a) (pmon2 (S n) b))
(pmon2 (S n) b))) = pmon1 (S n) a :>nat)
in |- ×.
2: rewrite H'2; auto.
rewrite (minus_lt_0 (pmon1 (S n) b) (pmon1 (S n) a)); simpl in |- *; auto.
red in |- *; intros H'3; absurd (pmon1 (S n) a < pmon1 (S n) b); auto.
apply le_not_lt; auto.
rewrite H'3; auto.
Qed.

Theorem div_clean_dec1 :
(d : nat) (a b : mon d),
gb d (div_mon_clean d a b) = true
gm d (div_mon_clean d a b) = div_mon d a b
mult_mon d (div_mon d a b) b = a.
intros d; elim d; simpl in |- *; auto.
intros n H' a b; case (le_lt_dec (pmon1 (S n) b) (pmon1 (S n) a));
simpl in |- *; auto.
2: intros H'0 H'1; inversion H'1.
intros l; generalize (H' (pmon2 (S n) a) (pmon2 (S n) b)).
case (div_mon_clean n (pmon2 (S n) a) (pmon2 (S n) b)); simpl in |- *; auto.
intros m b' H1 H2.
case (H1 H2); intros H3 H4; split; auto.
rewrite H3; auto.
rewrite (plus_comm (pmon1 (S n) a - pmon1 (S n) b) (pmon1 (S n) b)).
rewrite <- (le_plus_minus (pmon1 (S n) b) (pmon1 (S n) a)); auto.
rewrite H4; auto.
try exact (proj_ok n a).
Qed.
Require Import Max.

Definition ppcm_mon : d : nat, mon d mon d mon d.
intros d; elim d.
intros m1 m2; exact n_0.
intros n Rec S1 S2.
exact
(c_n n (max (pmon1 (S n) S1) (pmon1 (S n) S2))
(Rec (pmon2 (S n) S1) (pmon2 (S n) S2))).
Defined.

Theorem ppcm_com :
(d : nat) (a b : mon d), ppcm_mon d a b = ppcm_mon d b a.
intros d; elim d; simpl in |- *; auto.
intros n H' a b; rewrite (H' (pmon2 (S n) a) (pmon2 (S n) b)).
rewrite (max_comm (pmon1 (S n) a) (pmon1 (S n) b)); auto.
Qed.

Theorem ppcm_prop_l :
(d : nat) (a b : mon d),
ppcm_mon d a b = mult_mon d (div_mon d (ppcm_mon d a b) a) a.
intros d; elim d; simpl in |- *; auto.
intros n H' a b;
pattern (ppcm_mon n (pmon2 (S n) a) (pmon2 (S n) b)) at 1 in |- *;
rewrite (H' (pmon2 (S n) a) (pmon2 (S n) b)).
pattern (max (pmon1 (S n) a) (pmon1 (S n) b)) at 1 in |- *;
rewrite
(le_plus_minus (pmon1 (S n) a) (max (pmon1 (S n) a) (pmon1 (S n) b)))
; auto.
rewrite
(plus_comm (pmon1 (S n) a)
(max (pmon1 (S n) a) (pmon1 (S n) b) - pmon1 (S n) a))
; auto.
apply le_max_l; auto.
Qed.

Theorem ppcm_prop_r :
(d : nat) (a b : mon d),
ppcm_mon d a b = mult_mon d (div_mon d (ppcm_mon d a b) b) b.
intros d; elim d; simpl in |- *; auto.
intros n H' a b;
pattern (ppcm_mon n (pmon2 (S n) a) (pmon2 (S n) b)) at 1 in |- *;
rewrite (H' (pmon2 (S n) a) (pmon2 (S n) b)).
pattern (max (pmon1 (S n) a) (pmon1 (S n) b)) at 1 in |- *;
rewrite
(le_plus_minus (pmon1 (S n) b) (max (pmon1 (S n) a) (pmon1 (S n) b)))
; auto.
rewrite
(plus_comm (pmon1 (S n) b)
(max (pmon1 (S n) a) (pmon1 (S n) b) - pmon1 (S n) b))
; auto.
apply le_max_r; auto.
Qed.

Theorem plus_minus_le : a b : nat, a - b + b = a b a.
intros a; elim a; simpl in |- *; auto.
intros b H'; rewrite H'; auto.
intros n H' b; case b; simpl in |- *; auto with arith.
intros n0; rewrite (plus_comm (n - n0) (S n0)); simpl in |- *; auto.
rewrite (plus_comm n0 (n - n0)); auto with arith.
Qed.

Theorem ppcm_mom_is_ppcm :
(d : nat) (a b c : mon d),
c = mult_mon d (div_mon d c a) a
c = mult_mon d (div_mon d c b) b
c = mult_mon d (div_mon d c (ppcm_mon d a b)) (ppcm_mon d a b).
intros d; elim d; simpl in |- *; auto.
intros n H' a b c H'0 H'1.
rewrite <- (H' (pmon2 (S n) a) (pmon2 (S n) b) (pmon2 (S n) c)); auto.
2: change
(pmon2 (S n) c =
pmon2 (S n)
(c_n n (pmon1 (S n) c - pmon1 (S n) a + pmon1 (S n) a)
(mult_mon n (div_mon n (pmon2 (S n) c) (pmon2 (S n) a))
(pmon2 (S n) a))) :>mon n) in |- *; auto.
2: rewrite <- H'0; auto.
2: change
(pmon2 (S n) c =
pmon2 (S n)
(c_n n (pmon1 (S n) c - pmon1 (S n) b + pmon1 (S n) b)
(mult_mon n (div_mon n (pmon2 (S n) c) (pmon2 (S n) b))
(pmon2 (S n) b))) :>mon n) in |- *; auto.
2: rewrite <- H'1; auto.
rewrite
(plus_comm (pmon1 (S n) c - max (pmon1 (S n) a) (pmon1 (S n) b))
(max (pmon1 (S n) a) (pmon1 (S n) b))).
rewrite <-
(le_plus_minus (max (pmon1 (S n) a) (pmon1 (S n) b)) (pmon1 (S n) c))
; auto.
rewrite <- (proj_ok n c); auto.
apply max_case2; auto.
apply plus_minus_le; auto.
change
(pmon1 (S n)
(c_n n (pmon1 (S n) c - pmon1 (S n) a + pmon1 (S n) a)
(mult_mon n (div_mon n (pmon2 (S n) c) (pmon2 (S n) a))
(pmon2 (S n) a))) = pmon1 (S n) c :>nat)
in |- *; auto.
rewrite <- H'0; auto.
apply plus_minus_le; auto.
change
(pmon1 (S n)
(c_n n (pmon1 (S n) c - pmon1 (S n) b + pmon1 (S n) b)
(mult_mon n (div_mon n (pmon2 (S n) c) (pmon2 (S n) b))
(pmon2 (S n) b))) = pmon1 (S n) c :>nat)
in |- *; auto.
rewrite <- H'1; auto.
Qed.
End Monomials.