Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (17411 entries) Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (22 entries) Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1265 entries) Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (105 entries) Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (6370 entries) Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (179 entries) Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (14 entries) Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1836 entries) Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (115 entries) Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (2621 entries) Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (4423 entries) Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (461 entries)

# Global Index

## A

Antisymmetric [definition, in ConCaT.RELATIONS.Relations]
Antisymmetric [definition, in ConCaT.RELATIONS.Relations]
Antisymmetric [definition, in ConCaT.RELATIONS.Relations]
Antisymmetric [definition, in ConCaT.RELATIONS.Relations]
Antisymmetric [definition, in ConCaT.RELATIONS.Relations]
Antisymmetric [definition, in ConCaT.RELATIONS.Relations]
Antisymmetric [definition, in ConCaT.RELATIONS.Relations]
Antisymmetric [definition, in ConCaT.RELATIONS.Relations]
Antisymmetric [definition, in ConCaT.RELATIONS.Relations]
Antisymmetric [definition, in ConCaT.RELATIONS.Relations]
Antisymmetric [definition, in ConCaT.RELATIONS.Relations]
Antisymmetric [definition, in ConCaT.RELATIONS.Relations]
Antisymmetric [definition, in ConCaT.RELATIONS.Relations]
Ap [projection, in ConCaT.SETOID.Map]
Ap [projection, in ConCaT.SETOID.Map]
ApMop [definition, in ConCaT.SETOID.STRUCTURE.Monoid]
ApMop [definition, in ConCaT.SETOID.STRUCTURE.Monoid]
ApMop [definition, in ConCaT.SETOID.STRUCTURE.Monoid]
ApMop [definition, in ConCaT.SETOID.STRUCTURE.Monoid]
ApMop [definition, in ConCaT.SETOID.STRUCTURE.Monoid]
ApNT [projection, in ConCaT.CATEGORY_THEORY.NT.Ntransformation]
ApNT [projection, in ConCaT.CATEGORY_THEORY.NT.Ntransformation]
ApNT [projection, in ConCaT.CATEGORY_THEORY.NT.Ntransformation]
ApNT [projection, in ConCaT.CATEGORY_THEORY.NT.Ntransformation]
Ap' [projection, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Ap' [projection, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Ap' [projection, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Ap'' [projection, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Ap'' [projection, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Ap'' [projection, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Ap'' [projection, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Ap''0 [projection, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
Ap''0 [projection, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
Ap''0 [projection, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
Ap''0 [projection, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
Ap''0 [projection, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
Ap0'' [projection, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
Ap0'' [projection, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
Ap0'' [projection, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
Ap0'' [projection, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
Ap0'' [projection, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
Ap2 [definition, in ConCaT.SETOID.Map2]
Ap2 [definition, in ConCaT.SETOID.Map2]
Ap2 [definition, in ConCaT.SETOID.Map2]
Ap2' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Ap2' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Ap2' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Ap2' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Ap2'' [definition, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Ap2'' [definition, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Ap2'' [definition, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Ap2'' [definition, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Ap2'' [definition, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
AreBij0'' [definition, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
AreBij0'' [definition, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
AreBij0'' [definition, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
AreBij0'' [definition, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
AreBij0'' [definition, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
AreBij0'' [definition, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
AreBij0'' [definition, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
AreBij0'' [definition, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
AreBij0'' [definition, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
AreIsos [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
AreIsos [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
AreIsos [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
AreIsos [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
AreIsos [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
AreIsos [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
AreIsos [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
AreNatIsos [definition, in ConCaT.CATEGORY_THEORY.NT.NatIso]
AreNatIsos [definition, in ConCaT.CATEGORY_THEORY.NT.NatIso]
AreNatIsos [definition, in ConCaT.CATEGORY_THEORY.NT.NatIso]
AreNatIsos [definition, in ConCaT.CATEGORY_THEORY.NT.NatIso]
AreNatIsos [definition, in ConCaT.CATEGORY_THEORY.NT.NatIso]
AreNatIsos [definition, in ConCaT.CATEGORY_THEORY.NT.NatIso]
AreNatIsos [definition, in ConCaT.CATEGORY_THEORY.NT.NatIso]
AreNatIsos [definition, in ConCaT.CATEGORY_THEORY.NT.NatIso]
AreNatIsos [definition, in ConCaT.CATEGORY_THEORY.NT.NatIso]
AreNatIsos [definition, in ConCaT.CATEGORY_THEORY.NT.NatIso]
Arrow [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Arrow [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Arrow [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Arrow [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Arrow [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Arrs [record, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Arrs [record, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Arrs [record, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Arrs [record, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
arrs_setoid_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
arrs_setoid_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
arrs_setoid_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
arrs_setoid_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
arrs_setoid_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
arrs_setoid_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
arrs_setoid_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
arrs_setoid_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
arrs_setoid_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
arrs_setoid_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
arrs_setoid_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
arrs_setoid_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
arrs_setoid_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
arrs_setoid_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
arrs_setoid_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
arrs_setoid_def.C [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Ass [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Ass [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Ass [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
assoc_horz_comp.G'' [variable, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_SET [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
assoc_horz_comp.F' [variable, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_MON [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
assoc_horz_comp.T' [variable, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_CAT [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Assoc_Dual [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
assoc_horz_comp [section, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_Discr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Assoc_CAT [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Assoc_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Assoc_Discr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Assoc_One [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Assoc_Comma [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Assoc_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Assoc_PA [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
assoc_horz_comp.B [variable, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
assoc_horz_comp.F [variable, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_Discr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Assoc_Discr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Assoc_Dual [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
assoc_horz_comp.C [variable, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_One [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Assoc_PA [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Assoc_PA [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Assoc_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
assoc_horz_comp.F'' [variable, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_One [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Assoc_FSC [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.FullSubCat]
Assoc_SET [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
assoc_horz_comp.G' [variable, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_CatFunct [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Assoc_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Assoc_PROD [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Assoc_CatFunct [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Assoc_SET [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Assoc_Discr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Assoc_SET [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Assoc_PA [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Assoc_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
assoc_horz_comp [section, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
assoc_horz_comp [section, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
assoc_horz_comp [section, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
assoc_horz_comp.G' [variable, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_CAT [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
assoc_horz_comp.G'' [variable, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_PROD [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Assoc_PROD [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Assoc_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
assoc_horz_comp.T'' [variable, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_Comma [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Assoc_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Assoc_CAT [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Assoc_Dual [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Assoc_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Assoc_CatFunct [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Assoc_FSC [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.FullSubCat]
Assoc_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
assoc_horz_comp [section, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_CatFunct [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Assoc_CatFunct [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Assoc_CatFunct [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Assoc_Comma [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Assoc_Comma [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Assoc_FSC [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.FullSubCat]
assoc_horz_comp [section, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_PROD [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
assoc_horz_comp.F' [variable, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_CatFunct [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
assoc_horz_comp.D [variable, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_PULB [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Assoc_PULB [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
assoc_horz_comp [section, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_PULB [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Assoc_SET [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Assoc_PA [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Assoc_Comma [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Assoc_One [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Assoc_PULB [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Assoc_Dual [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Assoc_Discr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Assoc_MON [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Assoc_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Assoc_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Assoc_Comma [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
assoc_horz_comp.F'' [variable, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_PROD [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Assoc_CatFunct [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Assoc_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
assoc_horz_comp [section, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
assoc_horz_comp [section, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Assoc_PA [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Assoc_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Assoc_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Assoc_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Assoc_PULB [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Assoc_Dual [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Assoc_CatFunct [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Assoc_MON [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Assoc_MON [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Assoc_CAT [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Assoc_Comma [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Assoc_Dual [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Assoc_FSC [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.FullSubCat]
assoc_horz_comp.A [variable, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Assoc_SET [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Assoc_PA [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Assoc_Dual [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Assoc_Dual [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Assoc_PROD [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Assoc_PULB [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
assoc_horz_comp.T'' [variable, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_One [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
assoc_horz_comp [section, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Assoc_PULB [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Assoc_FSC [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.FullSubCat]
Assoc_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Assoc_PULB [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Assoc_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Assoc_MON [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Assoc_PULB [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Assoc_Discr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
assoc_horz_comp [section, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_MON [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
assoc_horz_comp.G'' [variable, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
assoc_horz_comp [section, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_One [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Assoc_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Assoc_Discr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Assoc_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
assoc_horz_comp [section, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_Dual [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Assoc_PULB [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Assoc_CatFunct [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Assoc_One [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Assoc_CatFunct [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Assoc_MON [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Assoc_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Assoc_SET [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Assoc_PROD [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Assoc_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Assoc_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Assoc_CAT [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Assoc_One [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Assoc_SET [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Assoc_CatFunct [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
assoc_horz_comp.T'' [variable, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_Comma [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Assoc_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Assoc_FSC [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.FullSubCat]
assoc_horz_comp.T' [variable, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_SET [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Assoc_PROD [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Assoc_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
assoc_horz_comp.G [variable, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_FSC [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.FullSubCat]
Assoc_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
assoc_horz_comp.F'' [variable, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_Comma [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Assoc_FSC [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.FullSubCat]
Assoc_Discr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Assoc_MON [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Assoc_One [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Assoc_CAT [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Assoc_CAT [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Assoc_PA [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Assoc_CatFunct [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Assoc_Comma [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Assoc_FSC [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.FullSubCat]
Assoc_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
assoc_horz_comp.T [variable, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_Dual [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
assoc_horz_comp [section, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_MON [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Assoc_PROD [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Assoc_CAT [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Assoc_Discr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Assoc_PROD [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
assoc_horz_comp [section, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Assoc_Comma [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Assoc_Discr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Assoc_CatFunct [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Ass1 [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Ass1 [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Ass1 [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Ass1 [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Ast [definition, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Ast [definition, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Ast [definition, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Ast_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Ast_eq [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Ast_eq [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Ast_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Ast_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Ast_eq [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Ast_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Ast_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Ast_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Ast_eq [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Ast_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Ast_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Ast_eq [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Ast_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Ast_eq [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Ast_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
At_most_1mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
At_most_1mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
At_most_1mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
At_most_1mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
At_most_1mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
At_most_1mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
At_most_1mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
At_most_1mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
At_most_1mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
At_most_1mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
At_most_1mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
At_most_1mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]

## B

BasicTypes [library]
Beta_rule_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Exponents]
Beta_rule_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Exponents]
Beta_rule_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Exponents]
Beta_rule_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Exponents]
Beta_rule_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Exponents]
Beta_rule_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Exponents]
Beta_rule_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Exponents]
Beta_rule_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Exponents]
Beta_rule_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Exponents]
Beta_rule_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Exponents]
Beta_rule_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Exponents]
Beta_rule_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Exponents]
Beta_rule_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Exponents]
bij0'' [section, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
bij0'' [section, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
bij0'' [section, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
bij0'' [section, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
bij0'' [section, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
bij0'' [section, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
bij0''.A [variable, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
bij0''.B [variable, in ConCaT.CATEGORY_THEORY.NT.YONEDA_LEMMA.Map0_dup1]
Binary_Products [library]
BinOp [definition, in ConCaT.SETOID.STRUCTURE.Monoid]
BinOp [definition, in ConCaT.SETOID.STRUCTURE.Monoid]
BinOp [definition, in ConCaT.SETOID.STRUCTURE.Monoid]
BinOp [definition, in ConCaT.SETOID.STRUCTURE.Monoid]
BinOp [definition, in ConCaT.SETOID.STRUCTURE.Monoid]
BinProd [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
BinProd [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
BinProd [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
BinProd [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
BinProd [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
BinProd [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
BinProd [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
BinProd' [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Products]
BinProd' [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Products]
BinProd' [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Products]
BinProd' [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Products]
BinProd' [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Products]
BinProd' [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Products]
BinProd' [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Products]
BinProd' [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Products]
binprod'_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Products]
binprod'_def.a [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Products]
binprod'_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Products]
binprod'_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Products]
binprod'_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Products]
binprod'_def.b [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Products]
binprod'_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Products]
binprod'_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Products]
binprod'_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Products]
binprod'_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Products]
binprod'_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Products]
binprod'_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Products]
binprod'_def.C [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Products]
binprod'_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Products]
binprod'_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Products]
bp_def.bp_laws.Proj1_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Obj_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Proj1_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Proj1_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Proj1_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Proj1_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Obj_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Obj_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Proj2_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Proj2_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Proj1_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Proj1_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Proj1_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Proj2_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.a [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Obj_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Obj_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Proj2_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Proj2_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Proj2_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Op [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.b [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Proj2_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.C [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Proj2_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Proj1_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Proj2_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Op [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Proj1_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Proj2_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Obj_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Obj_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
bp_def.bp_laws.Obj_prod [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Binary_Products]
Build_noetherian [constructor, in ConCaT.RELATIONS.Noetherian]
Build_Comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Build_Comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Build_noetherian [constructor, in ConCaT.RELATIONS.Noetherian]
Build_Discr_mor [constructor, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Build_Equal_hom [constructor, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Build_Map2' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Build_Comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Build_Map2'' [definition, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Build_Map2' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Build_Map2'' [definition, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Build_Map2 [definition, in ConCaT.SETOID.Map2]
Build_Comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Build_Map2 [definition, in ConCaT.SETOID.Map2]
Build_Map2' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Build_Map2 [definition, in ConCaT.SETOID.Map2]
Build_Equal_hom [constructor, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Build_Discr_mor [constructor, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Build_Comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Build_Equal_hom [constructor, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Build_Comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Build_Comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Build_Comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Build_Map2'' [definition, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Build_Map2'' [definition, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Build_Equal_hom [constructor, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Build_Map2' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Build_Comp [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Build_Comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Build_Map2'' [definition, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Build_Comp [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Build_Discr_mor [constructor, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Build_noetherian [constructor, in ConCaT.RELATIONS.Noetherian]
Build_Comp [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Build_Map2 [definition, in ConCaT.SETOID.Map2]
Build_Comp [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Build_Comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Build_Comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Build_Comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Build_Comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Build_noetherian [constructor, in ConCaT.RELATIONS.Noetherian]
Build_Map2 [definition, in ConCaT.SETOID.Map2]
Build_Map2' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Build_Equal_hom [constructor, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Build_noetherian [constructor, in ConCaT.RELATIONS.Noetherian]
Build_Comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Build_Map2'' [definition, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Build_Equal_hom [constructor, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Build_Comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Build_Map2'' [definition, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Build_Comp [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Build_Equal_hom [constructor, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Build_Map2' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Build_noetherian [constructor, in ConCaT.RELATIONS.Noetherian]
Build_Comp [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Build_Equal_hom [constructor, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Build_Map2'' [definition, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Build_noetherian [constructor, in ConCaT.RELATIONS.Noetherian]
Build_noetherian [constructor, in ConCaT.RELATIONS.Noetherian]
Build_Discr_mor [constructor, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Build_Comp [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Build_Comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Build_Comp [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Build_Discr_mor [constructor, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Build_Comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Build_Comp [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Build_Map2 [definition, in ConCaT.SETOID.Map2]
Build_Discr_mor [constructor, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Build_Comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Build_Map2' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Build_Comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Build_Map2'' [definition, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Build_noetherian [constructor, in ConCaT.RELATIONS.Noetherian]
Build_Equal_hom [constructor, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Build_Discr_mor [constructor, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Build_noetherian [constructor, in ConCaT.RELATIONS.Noetherian]
Build_Map2' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Build_Equal_hom [constructor, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Build_noetherian [constructor, in ConCaT.RELATIONS.Noetherian]
Build_Map2'' [definition, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Build_Equal_hom [constructor, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Build_Equal_hom [constructor, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Build_Comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Build_Discr_mor [constructor, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Build_noetherian [constructor, in ConCaT.RELATIONS.Noetherian]
Build_Comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Build_Map2'' [definition, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Build_noetherian [constructor, in ConCaT.RELATIONS.Noetherian]
Build_Map2' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Build_Equal_hom [constructor, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Build_Discr_mor [constructor, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Build_Discr_mor [constructor, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Build_Map2 [definition, in ConCaT.SETOID.Map2]
Build_noetherian [constructor, in ConCaT.RELATIONS.Noetherian]
Build_Discr_mor [constructor, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Build_Map2' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Build_Discr_mor [constructor, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Build_Discr_mor [constructor, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Build_Equal_hom [constructor, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Build_Map2'' [definition, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Build_Equal_hom [constructor, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Build_Discr_mor [constructor, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Build_Comp [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Build_Discr_mor [constructor, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Build_Map2 [definition, in ConCaT.SETOID.Map2]
Build_Map2 [definition, in ConCaT.SETOID.Map2]
Build_noetherian [constructor, in ConCaT.RELATIONS.Noetherian]
Build_Comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Build_Map2 [definition, in ConCaT.SETOID.Map2]
Build_noetherian [constructor, in ConCaT.RELATIONS.Noetherian]
Build_Map2' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Build_Comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Build1_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Build1_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Build1_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Build1_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Build1_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Build1_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Build1_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Build1_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Build1_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Build1_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Build1_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]

## C

Carrier [projection, in ConCaT.SETOID.Setoid]
Carrier [projection, in ConCaT.SETOID.Setoid]
Carrier [projection, in ConCaT.SETOID.Setoid]
Carrier [projection, in ConCaT.SETOID.Setoid]
Carrier [projection, in ConCaT.SETOID.Setoid]
Carrier [projection, in ConCaT.SETOID.Setoid]
Carrier [projection, in ConCaT.SETOID.Setoid]
Carrier' [projection, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Carrier' [projection, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Carrier' [projection, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Carrier' [projection, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Carrier' [projection, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Carrier' [projection, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Carrier' [projection, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Carrier' [projection, in ConCaT.CATEGORY_THEORY.FUNCTOR.Setoid_dup1]
Carrier'' [projection, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Carrier'' [projection, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Carrier'' [projection, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Carrier'' [projection, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Carrier'' [projection, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Carrier'' [projection, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Carrier'' [projection, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Carrier'' [projection, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Carrier'' [projection, in ConCaT.CATEGORY_THEORY.NT.Setoid_dup2]
Cartesian [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Cartesian [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Cartesian [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Cartesian [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Cartesian [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Cartesian [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Cartesian [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Cartesian [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Cartesian [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Cartesian1 [library]
Car_terminal [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_Cat [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_terminal [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_Cat [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_terminal [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_terminal [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_BP [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_Cat [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_Cat [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_BP [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_BP [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_terminal [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_BP [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_terminal [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_terminal [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_Cat [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_terminal [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_terminal [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_Cat [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_BP [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_Cat [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_terminal [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_terminal [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_BP [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
Car_terminal [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
cat [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
CAT [library]
Category [record, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Category [record, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Category [record, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Category [record, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Category [record, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Category [record, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Category [record, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Category [record, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Category [library]
Category_dup1 [library]
Category_dup2 [library]
Category' [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Category' [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Category' [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Category' [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Category' [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Category' [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Category' [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Category' [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Category' [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Category'' [record, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Category'' [record, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Category'' [record, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Category'' [record, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Category'' [record, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Category'' [record, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Category'' [record, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Category'' [record, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Category'' [record, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Category'' [record, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
CatFunct [library]
CatProperty [library]
Cat_comp [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat_functor.compnt.T' [variable, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Cat_comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat_functor.id_catfunct_def [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_functor.compnt [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Cat_comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat_functor.compnt.F [variable, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Cat_comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat_functor [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_functor.compnt [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_functor.id_catfunct_def [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_cong [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat_functor.compnt [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Cat_comp [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Cat_comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat_functor.id_catfunct_def [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_functor.id_catfunct_def [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Cat_comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat_functor.id_catfunct_def [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_functor [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_functor.compnt [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Cat_comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat_cong [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat_functor.id_catfunct_def [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_functor [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_functor [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Cat_comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat_functor.id_catfunct_def [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_cong [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat_functor.compnt.T' [variable, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_functor.id_catfunct_def [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_functor.id_catfunct_def.F [variable, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_functor.compnt.T [variable, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Cat_comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Cat_comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Cat_comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat_functor.compnt [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Cat_comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Cat_comp [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat_cong.C [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat_functor.id_catfunct_def [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_functor.id_catfunct_def [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_functor.id_catfunct_def [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Cat_comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Cat_comp [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat_functor.id_catfunct_def [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_functor.C [variable, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Cat_comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Cat_comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat_functor [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_cong [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat_functor [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_functor.D [variable, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_functor [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_functor.compnt [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_functor [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Cat_comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat_cong [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Cat_comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat_cong [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Cat_comp [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat_functor [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_functor.id_catfunct_def [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Cat_comp [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat_functor.id_catfunct_def [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_cong [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat_functor [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_functor.id_catfunct_def [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
cat_functor.compnt.H [variable, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Cat_comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat_functor [section, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Cat_comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat_functor.compnt.G [variable, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Cat_comp [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Cat_comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat_cong [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Cat_comp [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat''.Hom'' [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat''.Hom'' [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat''.Hom'' [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat''.Hom'' [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat''.Hom'' [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat''.Id'' [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat''.Id'' [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat''.Id'' [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat''.Id'' [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat''.Ob'' [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat''.Ob'' [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat''.Ob'' [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat''.Ob'' [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat''.Op_comp'' [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat''.Op_comp'' [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat''.Op_comp'' [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat''.Op_comp'' [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat''.Op_comp'' [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat''.Op_comp'' [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat''.Op_comp'' [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat''.Op_comp'' [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat''.Op_comp'' [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
cat'.Hom' [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat'.Hom' [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat'.Hom' [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat'.Hom' [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat'.Id' [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat'.Id' [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat'.Id' [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat'.Ob' [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat'.Ob' [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat'.Ob' [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat'.Op_comp' [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat'.Op_comp' [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat'.Op_comp' [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat'.Op_comp' [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat'.Op_comp' [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat'.Op_comp' [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat'.Op_comp' [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat'.Op_comp' [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
cat.Hom [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat.Hom [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat.Hom [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat.Id [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat.Id [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat.Ob [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat.Ob [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat.Op_comp [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat.Op_comp [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat.Op_comp [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat.Op_comp [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat.Op_comp [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat.Op_comp [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
cat.Op_comp [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
_ o _ [notation, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
_ --> _ [notation, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
CCC [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC [library]
CCC_isCar [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_Car [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_exponent [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_isCar [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_Car [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_exponent [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_exponent [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_Car [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_exponent [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_exponent [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_Car [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_exponent [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_isCar [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_exponent [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_isCar [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_exponent [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_isCar [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_exponent [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_exponent [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_exponent [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_isCar [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_exponent [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_isCar [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_isCar [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_Car [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_Car [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_Car [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC_isCar [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CCC]
CCC1 [library]
Check_S_equaz_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Equalizer]
Check_S_pulb_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Pullback]
Check_S_pulb_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Pullback]
Check_S_equaz_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Equalizer]
Check_S_pulb_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Pullback]
Check_S_equaz_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Equalizer]
Check_S_equaz_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Equalizer]
Check_S_equaz_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Equalizer]
Check_S_pulb_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Pullback]
Check_S_equaz_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Equalizer]
Check_S_equaz_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Equalizer]
Check_S_pulb_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Pullback]
Check_S_pulb_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Pullback]
Check_S_equaz_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Equalizer]
Check_S_pulb_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Pullback]
Check_S_equaz_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Equalizer]
Check_S_pulb_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Pullback]
Check_S_equaz_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Equalizer]
Check_S_equaz_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Equalizer]
Check_S_pulb_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Pullback]
Check_S_pulb_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Pullback]
Check_S_equaz_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Equalizer]
Check_S_equaz_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Equalizer]
Check_S_pulb_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Pullback]
Check_S_equaz_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Equalizer]
Check_S_equaz_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Equalizer]
Check_S_pulb_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Pullback]
Check_S_pulb_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Pullback]
Check_S_equaz_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Equalizer]
Check_S_equaz_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Equalizer]
Check_S_pulb_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Pullback]
Check_S_equaz_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Equalizer]
Check_S_equaz_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Equalizer]
Check_S_pulb_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Pullback]
Check_S_pulb_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Pullback]
Check_S_pulb_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Pullback]
Check_S_pulb_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Pullback]
Check_S_pulb_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Pullback]
Check_S_equaz_constr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.SET_Equalizer]
Cldiese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Cldiese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Cldiese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Cldiese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Cldiese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Cldiese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Cldiese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Cldiese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Cldiese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Cldiese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Cldiese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Cocomplete [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Cocomplete [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Cocomplete [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Cocomplete [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Cocomplete [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Cocomplete [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Cocomplete [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Cocomplete [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Cocomplete [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Cocomplete [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoCone [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoCone [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoCone [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoCone [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoCone [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoCone [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoCone_law [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoCone_law [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoCone_law [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoCone_law [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoCone_law [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoCone_law [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoCone_law [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoCone_law [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoCone_law [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoCone_law [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Codiese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
Codiese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
Codiese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
Codiese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
Codiese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
Codiese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
Codiese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
Codiese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
Codiese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
Codiese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
Codiese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
Codom [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Codom [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Codom [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Codom [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Codom [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Coherence [projection, in ConCaT.SETOID.Setoid]
Coherence [projection, in ConCaT.SETOID.Setoid]
Coherence [projection, in ConCaT.SETOID.Setoid]
Coherence [projection, in ConCaT.SETOID.Setoid]
Coherence [projection, in ConCaT.SETOID.Setoid]
Coherence [projection, in ConCaT.SETOID.Setoid]
Coherence [projection, in ConCaT.SETOID.Setoid]
Coherence [projection, in ConCaT.SETOID.Setoid]
Coherence [projection, in ConCaT.SETOID.Setoid]
Coherence [library]
coherent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
coherent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
coherent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
coherent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
coherent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
coherent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
coherent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
coherent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
coherent_symmetric [lemma, in ConCaT.RELATIONS.CONFLUENCE.Coherence]
coherent_symmetric [lemma, in ConCaT.RELATIONS.CONFLUENCE.Coherence]
coherent_symmetric [lemma, in ConCaT.RELATIONS.CONFLUENCE.Coherence]
coherent_symmetric [lemma, in ConCaT.RELATIONS.CONFLUENCE.Coherence]
coherent_symmetric [lemma, in ConCaT.RELATIONS.CONFLUENCE.Coherence]
coherent_symmetric [lemma, in ConCaT.RELATIONS.CONFLUENCE.Coherence]
coherent_symmetric [lemma, in ConCaT.RELATIONS.CONFLUENCE.Coherence]
coherent_symmetric [lemma, in ConCaT.RELATIONS.CONFLUENCE.Coherence]
coherent_symmetric [lemma, in ConCaT.RELATIONS.CONFLUENCE.Coherence]
coherent_symmetric [lemma, in ConCaT.RELATIONS.CONFLUENCE.Coherence]
coherent_symmetric [lemma, in ConCaT.RELATIONS.CONFLUENCE.Coherence]
coherent_symmetric [lemma, in ConCaT.RELATIONS.CONFLUENCE.Coherence]
coherent_symmetric [lemma, in ConCaT.RELATIONS.CONFLUENCE.Coherence]
coherent_symmetric [lemma, in ConCaT.RELATIONS.CONFLUENCE.Coherence]
coherent_symmetric [lemma, in ConCaT.RELATIONS.CONFLUENCE.Coherence]
coherent_symmetric [lemma, in ConCaT.RELATIONS.CONFLUENCE.Coherence]
coherent_symmetric [lemma, in ConCaT.RELATIONS.CONFLUENCE.Coherence]
coherent_symmetric [lemma, in ConCaT.RELATIONS.CONFLUENCE.Coherence]
Colim [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Colim [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Colim [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Colim [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Colim [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Colimit [record, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Colimit [record, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Colimit [record, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Colimit [record, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Colimit [record, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Colimit [record, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Colimit [record, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit [library]
colimit_def.iscolimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colim [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law2 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law2 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colim [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law2 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colimit_laws.cl_diese [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_eq [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_eq [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.F [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colimit_laws [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colimit_laws.cl_diese [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.l [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colimit_laws [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law2 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law2 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colimit_laws [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colimit_laws [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colim [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colimit_laws [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law2 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_eq [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_eq [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colimit_laws.cl_diese [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law2 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colimit_laws.cl_diese [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colim [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colimit_laws [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.J [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_eq [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colimit_laws.cl_diese [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_eq [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colimit_laws.cl_diese [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.C [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colimit_laws [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colimit_laws [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colimit_laws.cl_diese [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colimit_laws [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colimit_laws [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law2 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law2 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colim [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_eq [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_eq [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law2 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_eq [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law2 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.nu [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colimit_laws.cl_diese [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_law2 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
CoLimit_eq [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colimit_laws [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.nu [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
colimit_def.iscolimit_def.colimit_laws [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Colim_diese [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Colim_diese [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Colim_diese [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Colim_diese [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Colim_diese [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Colim_diese [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Colim_diese [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Colim_diese [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Colim_diese [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Colim_diese [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Colim_diese [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Comma [library]
comma_complete.ctdiese [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_l_F [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_complete [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.A_comp_for_J [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_complete [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_l_F [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.l_GF' [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_def.comp_com_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_complete.ctdiese [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_complete [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_proj_def.comma_proj_map_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.x [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_proj_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_def.com_arrow_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_complete.ctdiese [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.ctdiese [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_complete [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_def.com_arrow_def.axf [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_l_F [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_complete [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_def.com_arrow_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_proj_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.A_comp_for_J [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_complete.F' [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_complete [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_def.comp_com_def.cxh [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_l_F1 [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.l_F' [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_complete [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_complete.A [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.X [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_def.G [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_complete.G_pres_JA [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_complete [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_complete.G_pres_JA [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_def.comp_com_def.axf [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_proj_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_proj_def.comma_proj_map_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_proj_def.comma_proj_map_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_def.com_arrow_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_complete.G_pres_JA [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_l_F [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.G_pres_JA [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_complete.A_comp_for_J [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_l_F1 [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_complete [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_proj_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_def.com_arrow_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_proj_def.comma_proj_map_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.l_F' [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_proj_def.comma_proj_map_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_def.com_arrow_def.bxg [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_l_F1 [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_proj_def.A [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_def.X [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_def.comp_com_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_proj_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_proj_def.X [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.A_comp_for_J [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_def.com_arrow_def.axf [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_l_F1 [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_complete [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_proj_def.comma_proj_map_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.G_pres_JA [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_def.com_arrow_def.bxg [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_proj_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_def.comp_com_def.axf [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_def.comp_com_def.g [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_complete [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_def.com_arrow_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_proj_def.comma_proj_map_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.A_comp_for_J [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_def.comp_com_def.f [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_def.comp_com_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_l_F1 [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_def.comp_com_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_proj_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_proj_def.comma_proj_map_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_def.comp_com_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_proj_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_def.com_arrow_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_def.comp_com_def.axf [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_proj_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.ctdiese [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_def.comp_com_def.bxg [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_complete.ctdiese.axf [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.F' [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_def.com_arrow_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_def.comp_com_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_proj_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_complete [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_l_F [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_proj_def.x [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.ctdiese [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_def.com_arrow_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_proj_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_proj_def.comma_proj_map_def.a [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.A_comp_for_J [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_complete.A_comp_for_J [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_proj_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_proj_def.comma_proj_map_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_proj_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_l_F [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_complete.ctdiese.axf [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.l_GF' [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_def.com_arrow_def.bxg [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_proj_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_proj_def.comma_proj_map_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_proj_def.comma_proj_map_def.b [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_l_F [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_complete.J [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_complete [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_def.com_arrow_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_complete.l_GF' [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_l_F [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_proj_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.F [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_proj_def.comma_proj_map_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_proj_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_def.comp_com_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_complete.A_comp_for_J [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_proj_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_proj_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_proj_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_proj_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_l_F1 [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_proj_def.comma_proj_map_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_proj_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.G_pres_JA [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_complete [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_def.com_arrow_def.axf [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_complete [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_proj_def.comma_proj_map_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_proj_def.comma_proj_map_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_complete [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_complete.G_pres_JA [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_complete.ctdiese.t [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_proj_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_def.comp_com_def.cxh [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_complete.A_comp_for_J [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_proj_def.G [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_l_F1 [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_def.com_arrow_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_def.comp_com_def.cxh [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_proj_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_def.comp_com_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_proj_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_complete [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_l_F1 [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_complete.G [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_l_F1 [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_proj_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_proj_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.l_GF' [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_def.comp_com_def.bxg [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_def.com_arrow_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_proj_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_complete [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.ctdiese.axf [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_def.comp_com_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_proj_def.comma_proj_map_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.l_F' [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_def.comp_com_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_proj_def.comma_proj_map_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_proj_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.l_F' [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_def.comp_com_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_def.comp_com_def.bxg [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_proj_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_complete [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_proj_def.comma_proj_map_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_proj_def.comma_proj_map_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.l_GF' [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_complete.A_comp_for_J [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_def.A [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_proj_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_proj_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_proj_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_complete.A_comp_for_J [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_complete.G_pres_JA [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_proj_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
Comma_l_F [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_def.comp_com_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_proj_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_def.x [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comma_proj_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma_proj]
comma_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_def.com_arrow_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_complete.ctdiese [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_complete [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_complete [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_complete.A_comp_for_J [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_l_F1 [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
comma_def.com_arrow_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comma_complete.G_pres_JA [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Comma_Complete]
Comma_UA [library]
Comma_proj [library]
Comma_Complete [library]
Comp [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Comp [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Comp [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Comp [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
CompH_NT_assoc [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
CompH_NT_assoc [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
CompH_NT_assoc [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
CompH_NT_assoc [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
CompH_NT_assoc [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
CompH_NT_assoc [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
CompH_NT_assoc [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
CompH_NT_assoc [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
CompH_NT_assoc [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
CompH_NT_assoc [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
CompH_NT_assoc [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
CompH_NT_assoc [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
CompH_NT_assoc [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
CompH_NT_assoc [lemma, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Complete [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Complete [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Complete [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Complete [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Complete [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Complete [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Complete [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Complete [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator''.pcgl [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator'.pcgr [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator.c [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator.pcgr [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator''.b [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator.H [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator'.pcgr [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator.pcgl [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator'.pcgr [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator'.pcgl [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator'.Cfun [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator''.pcgr [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator.Cfun [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator'.pcgl [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator''.pcgl [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator''.pcgl [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator''.a [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator.a [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator''.H [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator'.A [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator'.Cfun [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator''.pcgl [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator'.b [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator.b [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator''.pcgr [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator.Cfun [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator''.A [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator''.pcgr [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator'.pcgl [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator'.Cfun [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator''.Cfun [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator.Cfun [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator.pcgl [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator'.a [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator'.Cfun [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator'.H [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator''.Cfun [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator.pcgr [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator''.pcgr [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator''.Cfun [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator''.Cfun [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator.pcgl [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator.pcgr [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator.Cfun [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator.pcgl [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator.pcgr [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator''.c [variable, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator'.pcgr [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator.A [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator'.pcgl [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator'.c [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator'' [section, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
composition_to_operator' [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
composition_to_operator [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
CompV_NT_congr [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congr [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congr [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congl [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congl [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congr [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congr [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congr [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congr [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congl [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congr [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congl [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congl [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congr [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congl [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congr [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congl [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congl [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congr [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congr [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congl [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congl [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congl [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congr [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congl [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congl [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congr [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
CompV_NT_congl [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_dual_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_MonMor_map [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_F.comp_functor_map [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
comp_mon.m1 [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_dual_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_FMap_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_cone_tau [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_PA_fact1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_One_mor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_F.comp_functor_map [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_PA_fact1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_FMap_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
comp_functor_prop.C [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_MonMor_unit_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_One_mor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_One [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_MON [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_com_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_Functor_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_com_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_cone_tau_cone_law [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_PA_fact1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_MonMor_map [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_PA_fact4 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_PULB [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_cone [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_MonMor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_cone_tau_cone_law [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_cone_tau_cone_law [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_FMor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_FSC [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.FullSubCat]
Comp_Functor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_cone [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_com_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comp_mon.f [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_cone_tau_cone_law [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_fun_map_law [lemma, in ConCaT.SETOID.Map]
Comp_Darrow [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_F [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Functor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Functor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_One_mor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_MonMor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_dual_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_PULB_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_com_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_PA_fact3 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_FMap_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_One_mor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_Darrow [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_PA_fact3 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_com_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_PA_fact1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Pmor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_CatFunct [definition, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_PA_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_CAT [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_MonMor_unit_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_Pmor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_PULB [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_Functor_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_cone_tau_cone_law [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
comp_mon [section, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
comp_functor_prop.G1 [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_Functor_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_Discr_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_F [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_One_mor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_PA_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_map_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_PA_fact3 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Dual [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_PULB [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_dual_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_MonMor_map [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_Discr [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_Discr [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_CAT [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
comp_mon.m3 [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_One_mor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_MonMor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_MonMor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_Pmor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_Discr_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_One_mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_map_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_com_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_CatFunct [definition, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_Pmor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_MonMor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_MON [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_MonMor_map [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_MonMor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_cone [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_Dual [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_PA_fact4 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_F.comp_functor_map [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Functor_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_One_mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_PULB_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_F.C [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_PULB_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_MonMor_unit_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_dual_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_map_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_FMap_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Pmor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_One_mor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_PA_fact1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Functor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_MonMor_unit_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_MonMor_op_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_cone_tau_cone_law [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_Functor_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_MonMor_unit_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_Darrow [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
comp_cone.G [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_MonMor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_Functor_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
comp_mon.g [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_Pmor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_One_mor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_PULB_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_tau_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_One_mor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_Discr_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_F.E [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Comma [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_F [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_com_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_CatFunct [definition, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_map_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_Functor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_com_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_Discr_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_Discr [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_One [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_dual_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_PA [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Pmor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_Functor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
comp_mon [section, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_PA_fact4 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Darrow [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_Functor_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_PA_fact3 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_com_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comp_functor_prop [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_F [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Functor_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_MonMor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_One_mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_Darrow [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_Functor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_fun_map_law [lemma, in ConCaT.SETOID.Map]
Comp_tau_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_PULB_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
comp_cone [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_Functor_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_tau [definition, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_PULB_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_cone [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_Comma [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_tau [definition, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_PULB_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_PA_fact3 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Functor_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_PA_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_FMap_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_com_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_dual_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_MonMor_op_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_MonMor_unit_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
comp_cone.D [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_One_mor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_com_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_Comma [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_com_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_dual_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_Functor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_FMap [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_MonMor_op_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_MonMor_map [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_com_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_fun_map_law [lemma, in ConCaT.SETOID.Map]
Comp_Functor_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_PULB_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_One_mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_One_mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_dual_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_SET [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_PULB_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_MonMor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_Pmor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_CAT [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_PA_fact4 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Functor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Functor_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_FMor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_One_mor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_map_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_r [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Comp_cone_tau_cone_law [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_tau_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_PA_fact2 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_MonMor_unit_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_Comma [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_Pmor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_One_mor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_One_mor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_MonMor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_fun_map_law [lemma, in ConCaT.SETOID.Map]
Comp_Pmor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_cone_tau [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_PA_fact3 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Pmor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_FSC [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.FullSubCat]
Comp_tau_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_FMap_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_PA_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Discr_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_cone_tau [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_One_mor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_F.comp_functor_map [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_F [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Comma [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_One_mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_Pmor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_F.comp_functor_map [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_One_mor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_dual_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_PULB_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_com_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_fun_map_law [lemma, in ConCaT.SETOID.Map]
Comp_fun_map_law [lemma, in ConCaT.SETOID.Map]
Comp_MonMor_op_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_Pmor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
comp_functor_prop [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_dual_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_FOb [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_dual_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_fun_map_law [lemma, in ConCaT.SETOID.Map]
Comp_FMap [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_fun_map_law [lemma, in ConCaT.SETOID.Map]
Comp_FMap [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_l [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Comp_Functor_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_PULB_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_Pmor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_Discr_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_PA_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_map_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_MonMor_unit_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_MonMor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_One_mor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
comp_functor_prop [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_CatFunct [definition, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_com_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comp_mon [section, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_PULB [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_PULB_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_tau_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_map_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
comp_functor_prop [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_PA_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Pmor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_dual_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_MonMor_unit_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_MON [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_MonMor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_cone_tau [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_cone_tau_cone_law [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_PROD [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_map_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_Discr_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_PA_fact4 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Discr_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_MON [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_Functor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
comp_mon.m2 [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_PROD [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_dual_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_Discr_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_Functor_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_com_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_PA_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Discr_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_PA_fact4 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_One [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_map_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_com_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_com_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
comp_functor_prop.E [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_One_mor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_Functor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_com_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_Dual [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_PA_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_PA_fact1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_PULB_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_PA_fact4 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
comp_cone [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_Functor_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_Comma [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_com_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_PA_fact3 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_MonMor_op_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
comp_mon [section, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_fun [definition, in ConCaT.SETOID.Map]
Comp_map_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_Functor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_PULB_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_com_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_One_mor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_SET [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_Dual [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_F.comp_functor_map [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_PULB_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_cone_tau_cone_law [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_cone_tau_cone_law [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_PA [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
comp_functor_prop [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_lr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Comp_CatFunct [definition, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_MonMor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_Discr_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_com_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_Functor_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_Darrow [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_fun_map_law [lemma, in ConCaT.SETOID.Map]
Comp_cone_tau_cone_law [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_com_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_Functor_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_com_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_map_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_dual_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_dual_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_l [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Comp_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_PROD [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_Pmor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_Discr_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_fun [definition, in ConCaT.SETOID.Map]
comp_functor_prop.F1 [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_FMap [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_fun_map_law [lemma, in ConCaT.SETOID.Map]
Comp_One [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_PA_fact3 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_PA_fact3 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_PA_fact2 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_map_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_cone_tau_cone_law [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_MonMor_map [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_MonMor_op_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_F.comp_functor_map [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_lr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Comp_PA_fact3 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_map_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_PA_fact4 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_tau_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_PULB_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
comp_cone [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_PA_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
comp_functor_prop [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_FOb [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
comp_cone.F [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_Pmor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_PA_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Discr_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_One [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_l [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Comp_PA_fact2 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_PULB_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_FOb [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_cone_tau_cone_law [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_l [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Comp_PA_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_PA_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_MonMor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_F.G [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_com_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_One_mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_Functor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_F.comp_functor_map [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_FSC [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.FullSubCat]
comp_cone [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_Discr_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_F.comp_functor_map.b [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_PA_fact1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Functor_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_tau_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_FMap [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_tau [definition, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_One_mor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_FMap_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
comp_cone.C [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_dual_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_Dual [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
comp_cone [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_Functor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Functor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_SET [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_cone [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_MonMor_map [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_fun [definition, in ConCaT.SETOID.Map]
Comp_Discr_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
comp_mon [section, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_F.comp_functor_map [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_MonMor_map [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
comp_functor_prop [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_PULB_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_cone_tau [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_One_mor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_FSC [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.FullSubCat]
Comp_PROD [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_map_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_PROD [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_MonMor_unit_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_One_mor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_Functor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_map_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_FOb [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
comp_cone [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_MonMor_map [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_PA_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_MonMor_op_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_FMap_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_tau_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_MonMor_map [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_PA_fact1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_PA_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Functor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_FMor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_MonMor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_PULB_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_PA_fact4 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_MonMor_unit_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
comp_functor_prop [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_PA_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Dual [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_MonMor_map [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
comp_functor_prop.D [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_com_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_Discr [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
comp_cone [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_PA [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_PA [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Pmor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_Discr [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_SET [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_Discr_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_Functor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Pmor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_One_mor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_PA_fact3 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Discr [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_CatFunct [definition, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_cone [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_Functor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_F.comp_functor_map [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_F.comp_functor_map [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_CatFunct [definition, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
comp_functor_prop.F1 [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_One_mor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_fun [definition, in ConCaT.SETOID.Map]
Comp_Discr_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_FMor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_FOb [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_FSC [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.FullSubCat]
Comp_PA_fact4 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
comp_functor_prop.G1 [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_MonMor_unit_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
comp_functor_prop [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_PA_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_com_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_Discr_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_PULB [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_CatFunct [definition, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_com_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_MON [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_PA_fact4 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_PA_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Pmor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_dual_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_PA_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_map_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_PULB_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_Functor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Pmor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_One [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_MonMor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_PULB_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_PULB_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_Discr_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_MonMor_op_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_tau_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_One_mor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_One_mor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_map_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_PA_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Pmor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_Functor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_PA [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_CAT [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_Discr_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_PROD [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_fun_map_law [lemma, in ConCaT.SETOID.Map]
Comp_Functor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_MonMor_map [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_Comma [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_PA_fact4 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_PA_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Discr_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_Functor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_CatFunct [definition, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_Functor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Darrow [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_Pmor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_PULB_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
comp_mon [section, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_Functor_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_Darrow [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_One_mor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_PA_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_cone_tau_cone_law [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_One_mor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_fun_map_law [lemma, in ConCaT.SETOID.Map]
Comp_One_mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_cone_tau [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_com_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_PULB [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_PA_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Comma [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_CAT [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_FMap_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
comp_functor_prop.G [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_cone_tau [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_r [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Comp_FOb [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Functor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_CatFunct [definition, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_r [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Comp_One [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_MonMor_op_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_l [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Comp_fun [definition, in ConCaT.SETOID.Map]
Comp_PA [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_MonMor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_FMor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_PULB_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_tau [definition, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_MonMor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_PA_fact1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_CAT [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_Dual [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_PA_fact2 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_PULB_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_MON [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_cone_tau [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_PA_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_MonMor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_map_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_com_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_Functor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_SET [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
comp_mon.m3 [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_PA_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_F.comp_functor_map.a [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_PULB_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_F.D [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_fun_map_law [lemma, in ConCaT.SETOID.Map]
Comp_fun [definition, in ConCaT.SETOID.Map]
Comp_dual_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_cone_tau [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_lr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Comp_fun [definition, in ConCaT.SETOID.Map]
Comp_Functor_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
comp_functor_prop [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_PA_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_One_mor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_PA_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_PA_fact1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_cone_tau [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_FMap_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Discr_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_Functor_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_fun_map_law [lemma, in ConCaT.SETOID.Map]
Comp_MonMor_op_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_com_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_MonMor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_FOb [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_PA_fact3 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_cone_tau_cone_law [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
comp_mon [section, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_PA_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_One_mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_map_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_Discr_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_cone_tau [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_PA_fact2 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Pmor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_Functor_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_MonMor_unit_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_SET [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_FMap [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
comp_cone [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_tau_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_Dual [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_PULB_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_SET [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_Functor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
comp_cone.J [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_cone_tau [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_Functor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_tau [definition, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
comp_functor_prop [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_Darrow [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_r [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Comp_com_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_FMor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
comp_functor_prop [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
comp_mon.m2 [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_MonMor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_map_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_PULB_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_MON [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_MonMor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_cone_tau_cone_law [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_FMor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Functor_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_PA_fact1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_PROD [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_PA_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_com_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_dual_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_l [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
comp_cone.c [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_Discr_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
comp_functor_prop [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_Functor_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_One_mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_FMap [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_cone_tau_cone_law [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_Pmor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
comp_mon.m1 [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_dual_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_Functor_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_F.comp_functor_map [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Discr_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_MonMor_map [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_PROD [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_Functor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_MonMor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_F.H [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_FMor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_One_mor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_com_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_fun_map_law [lemma, in ConCaT.SETOID.Map]
Comp_PA_fact2 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Functor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_lr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Comp_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_tau_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_dual_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_r [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Comp_MonMor_unit_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_cone_tau_cone_law [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_PULB_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_One_mor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_MonMor_op_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_PULB_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_Pmor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_com_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_Functor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_MonMor_op_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_com_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_tau_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_com_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_MonMor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_tau [definition, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_cone_tau [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
comp_functor_prop [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_PROD [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_map_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_cone_tau_cone_law [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_MonMor_op_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_MonMor_unit_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_map_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_PULB_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_tau_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_com_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_Discr [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_dual_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_CAT [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_MonMor_unit_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_com_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_map_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_PA_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_com_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_Functor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_One_mor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_Functor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_One_mor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_Comma [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_CatFunct [definition, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_Functor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_PA_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_MonMor_unit_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_com_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_PA_fact4 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_PA_fact2 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Functor_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_com_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_One [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_PA_fact1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_MON [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_Dual [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_PA_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Functor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_PA_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Functor_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_Discr_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_CatFunct [definition, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_PULB_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_Discr_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_com_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_FMap_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_FMap [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Discr_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_Discr [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_PA_fact3 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_cone [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_Functor_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_Discr_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_Functor_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_fun_map_law [lemma, in ConCaT.SETOID.Map]
Comp_PULB_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_Functor_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_Functor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_PULB [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_com_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_com_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_PULB_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_cone_tau_cone_law [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_MonMor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_MonMor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_One_mor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_map_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_fun [definition, in ConCaT.SETOID.Map]
comp_functor_prop [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_PULB_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_com_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_MonMor_map [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_tau_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_PA_fact1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_cone [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_PA_fact2 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Functor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_PULB_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_dual_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
comp_cone.T [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_CAT [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_com_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_F.comp_functor_map [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Functor_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_MonMor_map [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_Functor_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_PULB_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_MonMor_op_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_Pmor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_map_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_cone_tau_cone_law [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_PA_fact2 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_PULB [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_MonMor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_SET [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_PULB_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_Discr_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_PA_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_PA_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Discr_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_Pmor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_One_mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_CatFunct [definition, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_tau [definition, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_PULB [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_Darrow [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_MonMor_unit_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_com_mor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_Pmor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_MonMor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_One_mor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_MonMor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_One_mor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_PA_fact2 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_PA_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_FOb [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_lr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Comp_dual_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_map_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_r [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Comp_tau [definition, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_MonMor_op_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_map_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_PA_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_F.comp_functor_map [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_MonMor_unit_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_Functor_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_dual_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_FMap_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Functor_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_One_mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp_PA_fact2 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_Functor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
comp_functor_prop [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_lr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Comp_Discr_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
comp_functor_prop.F [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_Functor_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Comp_Pmor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
comp_mon [section, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
comp_functor_prop [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunctorProperty]
Comp_PA_fact2 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_F.comp_functor_map [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Functor_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.CAT]
Comp_com_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_Darrow [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_PULB_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_Discr [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_MonMor_op_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_PULB_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_Functor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_F.comp_functor_map [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Functor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_com_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_PULB_congl [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_MonMor_unit_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_MonMor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_F [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_dual_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_FMap_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_Discr [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_MonMor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_FSC [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.FullSubCat]
Comp_MonMor_op_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_PA [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_cone_tau_cone_law [lemma, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_lr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Comp_dual_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_FSC [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.FullSubCat]
Comp_PA_congr [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_PA_fact2 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Comp_FMap [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_MonMor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_dual_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
comp_cone [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Comp_MonMor_op_law [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_cone [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Comp_tau_nt_law [lemma, in ConCaT.CATEGORY_THEORY.NT.CatFunct]
Comp_com_congr [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_PULB_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_FMor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Comp_PULB_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Comp_MonMor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_dual_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Comp_FSC [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.FullSubCat]
Comp_Comma [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_com_congl [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Comp_map_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.SET]
Comp_MonMor_congr [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.MON]
Comp_One_mor_congl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Comp' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Comp'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Com_UAlaw1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_isUA [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_UAlaw2 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_UAlaw2 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_ob [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Com_isUA [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_UAlaw2 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_UAlaw2 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_diese [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_arrow [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Com_UAlaw1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_UAlaw1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_diese [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_law [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Com_law [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Com_ob [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Com_UAlaw2 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_UAlaw2 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_diese [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_isUA [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_arrow [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Com_diese [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_diese [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_arrow [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Com_UAlaw1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_law [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Com_UAlaw2 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_isUA [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_UAlaw1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_diese [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_UAlaw1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_ob [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Com_UAlaw1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_UAlaw2 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_arrow [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Com_isUA [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_diese [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_arrow [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Com_arrow [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Com_law [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Com_isUA [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_law [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Com_UAlaw1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_law [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Com_diese [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_arrow [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Com_law [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Com_arrow [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Com_UAlaw2 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_ob [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Com_ob [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Com_diese [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_UAlaw2 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_arrow [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Com_isUA [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_isUA [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_UAlaw1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Com_ob [record, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Com_UAlaw1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Comma_UA]
Concat [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congr [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congr [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_map2 [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_map2 [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congr [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_map2 [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congl [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congl [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_map2 [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_map2 [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congr [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congr [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_map2 [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_map2 [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congl [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congr [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congl [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congr [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congl [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congl [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congl [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congl [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_map2 [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congr [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congl [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congr [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_map2 [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congl [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congl [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_map2 [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congr [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_map2 [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congr [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congr [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat_congl [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat1 [constructor, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat1 [constructor, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat1 [constructor, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat1 [constructor, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat1 [constructor, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat1 [constructor, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Concat1 [constructor, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Cond1 [record, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Th_Initial]
Cond1 [record, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Th_Initial]
Cond1 [record, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Th_Initial]
Cond1 [record, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Th_Initial]
Cond1 [record, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Th_Initial]
Cond1_f [projection, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Th_Initial]
Cond1_f [projection, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Th_Initial]
Cond1_i [projection, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Th_Initial]
Cond1_i [projection, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Th_Initial]
Cond1_f [projection, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Th_Initial]
Cond1_i [projection, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Th_Initial]
Cond1_f [projection, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Th_Initial]
Cond1_i [projection, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Th_Initial]
Cond1_f [projection, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Th_Initial]
Cond1_i [projection, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Th_Initial]
Cond1_i [projection, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Th_Initial]
Cond1_i [projection, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Th_Initial]
Cond1_f [projection, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Th_Initial]
Cond1_f [projection, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Th_Initial]
Cone [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Cone [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Cone [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Cone [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Cones [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Cones [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Cones [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Cones [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Cones [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Cone_law [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Cone_law [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Cone_law [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Cone_law [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Cone_law [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Cone_law [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Cone_law [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Cone_law [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Confluence [section, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
Confluence [section, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
Confluence [section, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
Confluence [section, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
Confluence [section, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
Confluence [section, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
Confluence [section, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
Confluence [section, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
Confluence [section, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
Confluence [section, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
Confluence [library]
Confluence.R [variable, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
Confluence.U [variable, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
Confluent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
confluent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
Confluent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
confluent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
Confluent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
confluent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
Confluent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
Confluent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
confluent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
confluent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
confluent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
confluent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
confluent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
Confluent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
Confluent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
confluent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
Confluent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
Confluent [definition, in ConCaT.RELATIONS.CONFLUENCE.Confluence]
Congl_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Congl_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Congl_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Congl_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Congl_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Congl_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Congl_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Congl_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Congl_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Congl_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Congl_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Congl_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Congl_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Congl_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Congl_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Congl_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Congl_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Congl_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Congl_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Congl_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Congl_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Congl_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Congl_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Congl_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Congl_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Congl_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Congl_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Congl_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Congl_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Congl_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Congr_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Congr_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Congr_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Congr_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Congr_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Congr_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Congr_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Congr_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Congr_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Congr_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Congr_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Congr_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Congr_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Congr_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Congr_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Congr_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Congr_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Congr_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Congr_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Congr_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Congr_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Congr_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Congr_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Congr_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Congr_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Congr_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Congr_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Congr_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Congr_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Congr_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Cong_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Cong_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Cong_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Cong_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Cong_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Cong_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Cong_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Cong_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Cong_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Cong_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Cong_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Cong_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Cong_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Cong_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Cong_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Cong_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Cong_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Cong_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Cong_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Cong_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Cong_law' [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Category_dup1]
Cong_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Cong_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Cong_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Cong_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Cong_law'' [definition, in ConCaT.CATEGORY_THEORY.NT.Category_dup2]
Cong_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Category]
Const [library]
constFun [section, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun [section, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun [section, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun [section, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun [section, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun [section, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun [section, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun [section, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun.A [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun.b [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun.B [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun.const_map_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun.const_map_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun.const_map_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun.const_map_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun.const_map_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun.const_map_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun.const_map_def.a2 [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun.const_map_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun.const_map_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun.const_map_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun.const_map_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun.const_map_def.a1 [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun.const_map_def.a1 [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun.const_map_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun.const_map_def.a2 [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun.const_map_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
constFun.const_map_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor_map_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor_map_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_id_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_comp_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_comp_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_comp_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor_map_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor_map_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_id_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor_map_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_id_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_id_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor_map_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor_map_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_comp_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_id_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor_map_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_ob [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_id_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_comp_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_comp_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_comp_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_comp_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor_map_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor_map_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_id_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_ob [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_id_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor_map_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_ob [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_comp_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor_map_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_comp_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_comp_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_ob [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_ob [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_id_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_id_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_comp_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_id_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor_map_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor_map_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor_map_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor_map_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_ob [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_ob [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_comp_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_comp_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_id_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_mor_map_law [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Const_ob [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Const]
Contains [definition, in ConCaT.RELATIONS.Relations]
Contains [definition, in ConCaT.RELATIONS.Relations]
Contains [definition, in ConCaT.RELATIONS.Relations]
Contains [definition, in ConCaT.RELATIONS.Relations]
Contains [definition, in ConCaT.RELATIONS.Relations]
Contains [definition, in ConCaT.RELATIONS.Relations]
Contains [definition, in ConCaT.RELATIONS.Relations]
Contains [definition, in ConCaT.RELATIONS.Relations]
Continuous [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Continuous [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Continuous [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Continuous [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Continuous [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Continuous [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Continuous [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Continuous [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Continuous [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
Continuous [definition, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
CoUA [record, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA [record, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA [record, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA [record, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_mor [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_unic1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_law2 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_unic1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.b [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1.A [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1 [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def.coua_laws [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1.u1 [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_unic1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_unic [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_unic [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diag [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diag [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_mor [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diese [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.A [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_ob [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diag1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_unic1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_mor [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_law2 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_mor [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_unic1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_law1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_mor [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1.iscoua_def1 [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_law2 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def.coua_laws [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_unic [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_unic [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_ob [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_unic1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diag1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1 [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1.iscoua_def1 [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def.coua_laws [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_unic [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diese [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_law1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_law2 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diag [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def.coua_laws [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diese [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1.iscoua_def1 [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1.iscoua_def1 [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diag [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_ob [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.B [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def.coua_laws [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def.coua_laws [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_eq [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_unic [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_unic1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diag [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1 [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_unic1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_law1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def.coua_laws [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diag1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1 [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def.u [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_eq [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1.iscoua_def1 [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1.iscoua_def1.u [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_eq [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diese [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def.coua_laws.co_diese [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diese [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_law1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_mor [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_ob [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def.coua_laws.co_diese [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_law1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diese [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def.coua_laws [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_law1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diese [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_mor [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_law2 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1.iscoua_def1 [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_ob [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_unic [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diag1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diag1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1.iscoua_def1 [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_unic1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_eq [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_law2 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1 [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_law2 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diese [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.F [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diese [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1.B [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_law2 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_eq [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1.iscoua_def1 [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def.coua_laws.co_diese [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def.a [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diese [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def.coua_laws.co_diese [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1.b [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1.u1 [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diag1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_eq [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1.iscoua_def1 [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diag [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diag1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_mor [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_law2 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1 [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def.coua_laws.co_diese [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_eq [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1.F [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1 [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1.iscoua_def1 [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1.iscoua_def1.u1 [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1.iscoua_def1.a [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def.coua_laws.co_diese [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def.coua_laws.co_diese [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1.iscoua_def1 [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1 [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1 [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diag1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_ob [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diag [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_unic [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diag1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def1.iscoua_def1.u1 [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_law1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_unic1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_law1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def.coua_laws [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def.t [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diag1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_law1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_unic [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diag [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def.coua_laws.co_diese [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_diag [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def.iscoua_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA_ob [projection, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
coua_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_diese [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_to_CoUA [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_to_CoUA [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_to_CoUA [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_to_CoUA [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_diese [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_to_CoUA [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_diese [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_diese [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_diese [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_to_CoUA [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_to_CoUA [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_diese [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_to_CoUA [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_to_CoUA [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_to_CoUA [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_diese [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_to_CoUA [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_to_CoUA [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_diese [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_diese [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_to_CoUA [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_diese [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUA1_diese [definition, in ConCaT.CATEGORY_THEORY.LIMITS.CoUniversalArrow]
CoUniversalArrow [library]
Co_EqC [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Co_EqC1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Co_EqC1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Co_EqC1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Co_EqC [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Co_EqC [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Co_EqC1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Co_EqC1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Co_EqC1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Co_EqC [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Co_EqC [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Co_EqC1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
Co_EqC [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]

## D

def_cone.c [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
def_cocone.cocone_nt [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_cone.F [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
def_pres_limits [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
def_cone.cone_nt [section, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
def_pres_limits [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
def_pres_limits [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
def_cocone.cocone_nt [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_pres_limits [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
def_cocone.cocone_nt [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_pres_limits [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
def_cone.cone_nt [section, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
def_pres_limits [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
def_cocone.c [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_pres_limits [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
def_cone.cone_nt [section, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
def_cocone.cocone_nt.T [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_cocone.cocone_nt.p [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_cocone.cocone_nt [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_cone.cone_nt.p [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
def_pres_limits [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
def_cocone [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_cocone [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_pres_limits.D [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
def_cocone.cocone_nt [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_cocone [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_pres_limits [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
def_pres_limits [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
def_pres_limits.C [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
def_cone [section, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
def_cocone.J [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_cone [section, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
def_cocone.cocone_nt [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_cocone.cocone_nt [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_cocone [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_pres_limits [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
def_cocone [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_cocone [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_cocone [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_cocone.F [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_cone [section, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
def_cone.J [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
def_cone.C [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
def_pres_limits [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
def_pres_limits [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
def_cone.cone_nt [section, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
def_cocone.cocone_nt [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_cone [section, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
def_cone.cone_nt [section, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
def_cocone [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_cone [section, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
def_cone [section, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
def_cone.cone_nt [section, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
def_cocone [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_cocone [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_pres_limits.G [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
def_pres_limits.J [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
def_cocone.cocone_nt [section, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_cone.cone_nt [section, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
def_cocone.C [variable, in ConCaT.CATEGORY_THEORY.LIMITS.CoLimit]
def_cone.cone_nt.T [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
def_pres_limits.F [variable, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
def_cone [section, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
def_pres_limits [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
def_cone [section, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
def_pres_limits [section, in ConCaT.CATEGORY_THEORY.LIMIT_CONSTRUCTIONS.Pres_Limits]
DFunctor_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
dfunctor_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
dfunctor_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
dfunctor_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
dfunctor_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
dfunctor_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
dfunctor_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
dfunctor_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
dfunctor_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
dfunctor_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
dfunctor_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
dfunctor_def.B [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_id_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
dfunctor_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
dfunctor_def [section, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
dfunctor_def.F [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_ob [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_map [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DFunctor_comp_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
dfunctor_def.A [variable, in ConCaT.CATEGORY_THEORY.FUNCTOR.Dual_Functor]
DHom [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
DHom [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
DHom [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
DHom [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
Diagonal [library]
Diese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.UniversalArrow]
Diese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.UniversalArrow]
Diese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.UniversalArrow]
Diese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.UniversalArrow]
Diese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.UniversalArrow]
Diese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.UniversalArrow]
Diese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.UniversalArrow]
Diese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.UniversalArrow]
Diese_map [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.UniversalArrow]
Diff_Concat1_Empty [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Diff_Concat1_Empty [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Diff_Concat1_Empty [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Diff_Concat1_Empty [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Diff_Concat1_Empty [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Diff_Concat1_Empty [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Diff_Concat1_Empty [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Diff_Concat1_Empty [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Diff_Concat1_Empty [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Diff_Concat1_Empty [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Diff_Concat1_Empty [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Diff_Concat1_Empty [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Diff_Concat1_Empty [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Diff_Concat1_Empty [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Diff_Concat1_Empty [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Diff_Concat1_Empty [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Diff_Concat1_Empty [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Diff_Concat1_Empty [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Discr [library]
discrete [section, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete [section, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete [section, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete [section, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete [section, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete [section, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete [section, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete [section, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete.disc_mor_setoid [section, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete.disc_mor_setoid [section, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete.disc_mor_setoid [section, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete.disc_mor_setoid [section, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete.disc_mor_setoid [section, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete.disc_mor_setoid [section, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete.disc_mor_setoid [section, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete.disc_mor_setoid [section, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete.disc_mor_setoid [section, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete.disc_mor_setoid.b [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete.disc_mor_setoid [section, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete.disc_mor_setoid [section, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete.disc_mor_setoid [section, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete.disc_mor_setoid [section, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete.disc_mor_setoid [section, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete.disc_mor_setoid.a [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete.disc_mor_setoid [section, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
discrete.U [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Discr_mor_ind1 [axiom, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Discr_mor [inductive, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Discr_mor_ind1 [axiom, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Discr_mor [inductive, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Discr_mor [inductive, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Discr_mor_ind1 [axiom, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Discr_mor_ind1 [axiom, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Discr_mor [inductive, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Discr_mor [inductive, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Discr_mor [inductive, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Discr_mor_ind1 [axiom, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Discr_mor [inductive, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Discr_mor_ind1 [axiom, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Discr_mor_ind1 [axiom, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Discr_mor [inductive, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Discr_mor_ind1 [axiom, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Discr_mor_ind1 [axiom, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Discr_mor_ind1 [axiom, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Discr_mor [inductive, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Discr_mor_ind1 [axiom, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Discr_mor_ind1 [axiom, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Discr_mor_ind1 [axiom, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Discr_mor_ind1 [axiom, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Dist_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_op_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_unit_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_fun [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_fun [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_op_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_unit_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_fun [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_unit_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_op_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_unit_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_unit_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_op_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_unit_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_unit_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_op_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_op_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_op_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_fun [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_op_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_op_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_op_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_fun [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_unit_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_unit_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_unit_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_unit_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_fun [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_op_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_unit_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_op_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_fun [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_unit_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_fun [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_op_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_unit_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_op_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_unit_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_op_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_unit_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dist_map_unit_law [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.FunFreeMon]
Dom [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Dom [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Dom [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Dual [library]
Dual_Functor [library]
d_cat [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
d_cat [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
d_cat.C [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
d_cat [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
d_cat [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]
d_cat [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Dual]

## E

Elt [constructor, in ConCaT.SETOID.BasicTypes]
Elt [constructor, in ConCaT.SETOID.BasicTypes]
Elt [constructor, in ConCaT.SETOID.BasicTypes]
Elt_sub [projection, in ConCaT.SETOID.Setoid_prop]
Elt_sub [projection, in ConCaT.SETOID.Setoid_prop]
Elt_sub [projection, in ConCaT.SETOID.Setoid_prop]
Elt_sub [projection, in ConCaT.SETOID.Setoid_prop]
Elt_sub [projection, in ConCaT.SETOID.Setoid_prop]
Elt_sub [projection, in ConCaT.SETOID.Setoid_prop]
Elt_sub [projection, in ConCaT.SETOID.Setoid_prop]
Elt1 [constructor, in ConCaT.SETOID.BasicTypes]
Elt1 [constructor, in ConCaT.SETOID.BasicTypes]
Elt1 [constructor, in ConCaT.SETOID.BasicTypes]
Elt1 [constructor, in ConCaT.SETOID.BasicTypes]
Elt2 [constructor, in ConCaT.SETOID.BasicTypes]
Elt2 [constructor, in ConCaT.SETOID.BasicTypes]
Elt2 [constructor, in ConCaT.SETOID.BasicTypes]
Elt2 [constructor, in ConCaT.SETOID.BasicTypes]
Empty [constructor, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Empty [constructor, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Empty [constructor, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Empty [constructor, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Empty [constructor, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
EmptyType [inductive, in ConCaT.SETOID.BasicTypes]
EmptyType [inductive, in ConCaT.SETOID.BasicTypes]
EmptyType [inductive, in ConCaT.SETOID.BasicTypes]
EmptyType [inductive, in ConCaT.SETOID.BasicTypes]
EmptyType [inductive, in ConCaT.SETOID.BasicTypes]
EmptyType [inductive, in ConCaT.SETOID.BasicTypes]
EmptyType [inductive, in ConCaT.SETOID.BasicTypes]
EmptyType [inductive, in ConCaT.SETOID.BasicTypes]
EmptyType [inductive, in ConCaT.SETOID.BasicTypes]
endo_mon [section, in ConCaT.CATEGORY_THEORY.CATEGORY.PermCat]
endo_mon [section, in ConCaT.CATEGORY_THEORY.CATEGORY.PermCat]
endo_mon [section, in ConCaT.CATEGORY_THEORY.CATEGORY.PermCat]
endo_mon [section, in ConCaT.CATEGORY_THEORY.CATEGORY.PermCat]
endo_mon [section, in ConCaT.CATEGORY_THEORY.CATEGORY.PermCat]
endo_mon.a [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.PermCat]
endo_mon [section, in ConCaT.CATEGORY_THEORY.CATEGORY.PermCat]
endo_mon [section, in ConCaT.CATEGORY_THEORY.CATEGORY.PermCat]
endo_mon [section, in ConCaT.CATEGORY_THEORY.CATEGORY.PermCat]
endo_mon.C [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.PermCat]
Epic [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic_Equalizer_id [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_mor [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic_Equalizer_id [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
epic_monic_def.C [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic_Equalizer_id [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_mor [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic_Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
epic_monic_def.b [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
epic_monic_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic_mor [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic_Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_mor [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
epic_monic_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
epic_monic_def.a [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
epic_monic_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic_Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_mor [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
epic_monic_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic_Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic_Equalizer_id [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
epic_monic_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic_Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_mor [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic_Equalizer_id [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_Equalizer_id [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
epic_monic_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic_Equalizer_id [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_Equalizer_id [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_Equalizer_id [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_Equalizer_id [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
epic_monic_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
epic_monic_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic_Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_Equalizer_id [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_mor [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic_mor [projection, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic_Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
epic_monic_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic_Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
epic_monic_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic_Equalizer_id [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_Equalizer_id [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_Equalizer_id [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
epic_monic_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic_law [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
epic_monic_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic_Equalizer_id [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
epic_monic_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
epic_monic_def [section, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.CatProperty]
Epic_Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_Equalizer_id [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Epic_Equalizer_id [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
EqC [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
EqC [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
EqC [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
EqC1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
EqC1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
EqC1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
EqC1 [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Limit]
Equal [projection, in ConCaT.SETOID.Setoid]
Equal [projection, in ConCaT.SETOID.Setoid]
Equal [projection, in ConCaT.SETOID.Setoid]
Equal [projection, in ConCaT.SETOID.Setoid]
Equal [projection, in ConCaT.SETOID.Setoid]
EqualH_NT [definition, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
EqualH_NT [definition, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
EqualH_NT [definition, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
EqualH_NT [definition, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
EqualH_NT [definition, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
EqualH_NT [definition, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
EqualH_NT [definition, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
EqualH_NT [definition, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
EqualH_NT [definition, in ConCaT.CATEGORY_THEORY.NT.InterChangeLaw]
Equalizer [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer [record, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizers [library]
Equalizers1 [library]
equalizer_limit_def.e1_diese_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_law1 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law1 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
equalizer_limit_def.C [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_eq [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law2 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law3 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_eq [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
equalizer_limit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
equalizer_limit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_law2 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
equalizer_limit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_eq [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law3 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_eq [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law3 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law1 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
equalizer_limit_def.e1_diese_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law3 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
equalizer_limit_def.I [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
equalizer_limit_def.e1_diese_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
equalizer_limit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_law3 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
equalizer_limit_def.e1_diese_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_law2 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law3 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
equalizer_limit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
equalizer_limit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law3 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law3 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law1 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_eq [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_eq [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
equalizer_limit_def.e1_diese_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
equalizer_limit_def.e1_diese_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
equalizer_limit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
equalizer_limit_def.k [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_eq [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law2 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law2 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_eq [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
equalizer_limit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_eq [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law1 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law1 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law3 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
equalizer_limit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
equalizer_limit_def.e1_diese_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_law2 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
equalizer_limit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_law1 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law2 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law1 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law1 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
equalizer_limit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_eq [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law3 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law1 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law2 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_eq [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law2 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
equalizer_limit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
equalizer_limit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
equalizer_limit_def.e1_diese_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
equalizer_limit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_law1 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law2 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law2 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
equalizer_limit_def.e1_diese_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law3 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law3 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_eq [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law2 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
equalizer_limit_def.l [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
equalizer_limit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_law3 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
equalizer_limit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_law1 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
equalizer_limit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
equalizer_limit_def.e1_diese_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_law1 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
equalizer_limit_def.e1_diese_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
equalizer_limit_def.e1_diese_def.h [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
equalizer_limit_def.a [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_law2 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
equalizer_limit_def.e1_diese_def.p [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
equalizer_limit_def.e1_diese_def.r [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
equalizer_limit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
equalizer_limit_def.b [variable, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
equalizer_limit_def.e1_diese_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_law2 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_law3 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
equalizer_limit_def [section, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer_law1 [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer_iso [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.CONSTRUCTIONS.Equalizers]
Equalizer1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1 [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_fg [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_hom [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_hom [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_fg [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_hom [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_hom [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_fg [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_fg [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_hom [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_hom [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_hom [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_hom [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_hom [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_hom [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_fg [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_hom [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_fg [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_fg [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_fg [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_hom [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_fg [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_hom [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_fg [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_fg [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_fg [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_hom [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer1_fg [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer2 [record, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer2 [record, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer2 [record, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer2 [record, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer2 [record, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer2 [record, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer2 [record, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer2 [record, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer2 [record, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equalizer2 [record, in ConCaT.CATEGORY_THEORY.LIMITS.Equalizers1]
Equal_com_arrow [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Equal_Sprod_equiv [lemma, in ConCaT.SETOID.SetoidPROD]
Equal_com_arrow_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Equal_Arrs_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Discr_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_hom_trans [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_hom_trans [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_com_arrow [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Equal_Pmor_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Equal_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_PULB_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Equal_hom [inductive, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Equal_com_arrow_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Equal_Single [definition, in ConCaT.SETOID.Single]
Equal_SubType_equiv [lemma, in ConCaT.SETOID.Setoid_prop]
equal_hom_equiv.c [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_com_arrow [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Equal_Tlist [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Equal_SubType_equiv [lemma, in ConCaT.SETOID.Setoid_prop]
Equal_Single_equiv [lemma, in ConCaT.SETOID.Single]
Equal_MonMor [definition, in ConCaT.SETOID.STRUCTURE.Monoid]
Equal_One_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_Sprod [definition, in ConCaT.SETOID.SetoidPROD]
Equal_Sprod_equiv [lemma, in ConCaT.SETOID.SetoidPROD]
Equal_Sprod_equiv [lemma, in ConCaT.SETOID.SetoidPROD]
Equal_hom_sym [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_PULB_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
equal_hom_equiv.C [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_com_arrow_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Equal_Arrs_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_SubType_equiv [lemma, in ConCaT.SETOID.Setoid_prop]
Equal_MonMor_equiv [lemma, in ConCaT.SETOID.STRUCTURE.Monoid]
Equal_Single_equiv [lemma, in ConCaT.SETOID.Single]
Equal_PA_mor_Equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Equal_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
equal_one_mor [section, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_hom_sym [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_hom_trans [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Functor_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Equal_Single_equiv [lemma, in ConCaT.SETOID.Single]
Equal_Sprod_equiv [lemma, in ConCaT.SETOID.SetoidPROD]
Equal_com_arrow [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Equal_NT [definition, in ConCaT.CATEGORY_THEORY.NT.Ntransformation]
Equal_SubType_equiv [lemma, in ConCaT.SETOID.Setoid_prop]
Equal_com_arrow_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Equal_Discr_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_PULB_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Equal_Arrs [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_SubType [definition, in ConCaT.SETOID.Setoid_prop]
Equal_One_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_MonMor_equiv [lemma, in ConCaT.SETOID.STRUCTURE.Monoid]
Equal_One_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_One_mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_PULB_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Equal_Tlist [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Equal_Discr_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_NT [definition, in ConCaT.CATEGORY_THEORY.NT.Ntransformation]
Equal_Arrs_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Sprod_equiv [lemma, in ConCaT.SETOID.SetoidPROD]
Equal_PA_mor_Equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Equal_SubType [definition, in ConCaT.SETOID.Setoid_prop]
Equal_Tlist_equiv [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Equal_PA_mor_Equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Equal_PULB_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Equal_Tlist_equiv [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
equal_one_mor [section, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_MonMor_equiv [lemma, in ConCaT.SETOID.STRUCTURE.Monoid]
Equal_hom_sym [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Tlist_equiv [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Equal_PA_mor_Equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Equal_NT [definition, in ConCaT.CATEGORY_THEORY.NT.Ntransformation]
Equal_hom_trans [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_One_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_Sprod_equiv [lemma, in ConCaT.SETOID.SetoidPROD]
Equal_One_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
equal_hom_equiv [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_PA_mor_Equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Equal_hom_sym [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_PA_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Equal_Discr_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
equal_hom_equiv [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_One_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_Functor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Equal_PA_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Equal_hom [inductive, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Single [definition, in ConCaT.SETOID.Single]
Equal_hom_sym [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Functor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Equal_Single_equiv [lemma, in ConCaT.SETOID.Single]
Equal_NT_equiv [lemma, in ConCaT.CATEGORY_THEORY.NT.Ntransformation]
Equal_Tlist_equiv [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Equal_com_arrow_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Equal_Arrs [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_NT_equiv [lemma, in ConCaT.CATEGORY_THEORY.NT.Ntransformation]
Equal_Arrs [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Tlist_equiv [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Equal_Arrs_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_hom [inductive, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_MonMor_equiv [lemma, in ConCaT.SETOID.STRUCTURE.Monoid]
Equal_hom_refl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Tlist [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
equal_hom_equiv [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_PA_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Equal_Discr_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_hom_trans [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
equal_one_mor.a [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_Discr_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_PULB_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Equal_Pmor_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Equal_NT [definition, in ConCaT.CATEGORY_THEORY.NT.Ntransformation]
Equal_Functor_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Equal_Functor_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Equal_Arrs_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Functor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Equal_One_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_PA_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Equal_PA_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Equal_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_NT [definition, in ConCaT.CATEGORY_THEORY.NT.Ntransformation]
Equal_Arrs_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_hom [inductive, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_com_arrow_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Equal_Tlist [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Equal_Single_equiv [lemma, in ConCaT.SETOID.Single]
Equal_Arrs_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_hom_refl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Functor_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Equal_Arrs [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Functor_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Equal_PULB_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Equal_PA_mor_Equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Equal_Sprod_equiv [lemma, in ConCaT.SETOID.SetoidPROD]
Equal_hom_sym [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_SubType [definition, in ConCaT.SETOID.Setoid_prop]
Equal_SubType_equiv [lemma, in ConCaT.SETOID.Setoid_prop]
Equal_One_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_hom_refl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_com_arrow [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Equal_PULB_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Equal_Discr_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_Pmor_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Equal_Pmor_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Equal_One_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_MonMor_equiv [lemma, in ConCaT.SETOID.STRUCTURE.Monoid]
Equal_Single_equiv [lemma, in ConCaT.SETOID.Single]
Equal_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Equal_NT_equiv [lemma, in ConCaT.CATEGORY_THEORY.NT.Ntransformation]
Equal_PULB_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Equal_PULB_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Equal_NT_equiv [lemma, in ConCaT.CATEGORY_THEORY.NT.Ntransformation]
Equal_NT_equiv [lemma, in ConCaT.CATEGORY_THEORY.NT.Ntransformation]
Equal_Tlist_equiv [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Equal_Arrs_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_One_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_hom [inductive, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_One_mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_NT_equiv [lemma, in ConCaT.CATEGORY_THEORY.NT.Ntransformation]
Equal_Sprod [definition, in ConCaT.SETOID.SetoidPROD]
Equal_Discr_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_com_arrow_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Equal_PULB_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Equal_PULB_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
equal_one_mor [section, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_hom_sym [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_MonMor [definition, in ConCaT.SETOID.STRUCTURE.Monoid]
Equal_hom_sym [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Discr_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
equal_one_mor [section, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_Functor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Equal_hom_trans [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_hom_refl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_MonMor_equiv [lemma, in ConCaT.SETOID.STRUCTURE.Monoid]
Equal_SubType_equiv [lemma, in ConCaT.SETOID.Setoid_prop]
equal_hom_equiv.d [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_MonMor_equiv [lemma, in ConCaT.SETOID.STRUCTURE.Monoid]
Equal_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_MonMor_equiv [lemma, in ConCaT.SETOID.STRUCTURE.Monoid]
Equal_NT_equiv [lemma, in ConCaT.CATEGORY_THEORY.NT.Ntransformation]
Equal_Functor_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Equal_Sprod [definition, in ConCaT.SETOID.SetoidPROD]
Equal_PA_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Equal_Single_equiv [lemma, in ConCaT.SETOID.Single]
Equal_hom_refl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Functor_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
equal_hom_equiv [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Sprod_equiv [lemma, in ConCaT.SETOID.SetoidPROD]
Equal_Discr_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_Sprod [definition, in ConCaT.SETOID.SetoidPROD]
Equal_Pmor_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Equal_Functor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Equal_Sprod [definition, in ConCaT.SETOID.SetoidPROD]
Equal_hom_sym [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
equal_hom_equiv [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_hom_refl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Tlist [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Equal_com_arrow_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
equal_hom_equiv [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_PULB_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Equal_Single [definition, in ConCaT.SETOID.Single]
equal_hom_equiv [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_Sprod_equiv [lemma, in ConCaT.SETOID.SetoidPROD]
Equal_com_arrow [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Equal_Tlist [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Equal_MonMor [definition, in ConCaT.SETOID.STRUCTURE.Monoid]
Equal_One_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_PA_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Equal_One_mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_Functor_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Equal_hom_refl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Single_equiv [lemma, in ConCaT.SETOID.Single]
Equal_hom_sym [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Functor_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Equal_MonMor_equiv [lemma, in ConCaT.SETOID.STRUCTURE.Monoid]
Equal_hom_refl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_PA_mor_Equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Equal_Single [definition, in ConCaT.SETOID.Single]
Equal_PA_mor_Equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Equal_One_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_SubType_equiv [lemma, in ConCaT.SETOID.Setoid_prop]
Equal_Pmor_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
equal_one_mor [section, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_MonMor_equiv [lemma, in ConCaT.SETOID.STRUCTURE.Monoid]
Equal_One_mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_com_arrow_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Equal_Pmor_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Equal_Sprod [definition, in ConCaT.SETOID.SetoidPROD]
equal_hom_equiv [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_MonMor_equiv [lemma, in ConCaT.SETOID.STRUCTURE.Monoid]
Equal_Tlist_equiv [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Equal_Single_equiv [lemma, in ConCaT.SETOID.Single]
Equal_Functor_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Equal_hom_sym [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
equal_hom_equiv.i [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_SubType [definition, in ConCaT.SETOID.Setoid_prop]
equal_hom_equiv.g [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Single_equiv [lemma, in ConCaT.SETOID.Single]
Equal_Single_equiv [lemma, in ConCaT.SETOID.Single]
Equal_hom_trans [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_PA_mor_Equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Equal_com_arrow [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Equal_Functor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Equal_hom [inductive, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_One_mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_Discr_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_hom_trans [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Discr_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_PA_mor_Equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Equal_Tlist [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Equal_Discr_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_com_arrow_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Equal_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Equal_hom [inductive, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_MonMor_equiv [lemma, in ConCaT.SETOID.STRUCTURE.Monoid]
Equal_NT [definition, in ConCaT.CATEGORY_THEORY.NT.Ntransformation]
Equal_NT_equiv [lemma, in ConCaT.CATEGORY_THEORY.NT.Ntransformation]
Equal_Arrs_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Arrs [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_One_mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_SubType [definition, in ConCaT.SETOID.Setoid_prop]
equal_hom_equiv.h [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_PA_mor_Equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Equal_PA_mor_Equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PA]
Equal_NT [definition, in ConCaT.CATEGORY_THEORY.NT.Ntransformation]
Equal_Arrs [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_One_mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_Discr_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_Functor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Equal_Arrs_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Single [definition, in ConCaT.SETOID.Single]
equal_hom_equiv [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Discr_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_MonMor_equiv [lemma, in ConCaT.SETOID.STRUCTURE.Monoid]
Equal_NT_equiv [lemma, in ConCaT.CATEGORY_THEORY.NT.Ntransformation]
Equal_Sprod [definition, in ConCaT.SETOID.SetoidPROD]
Equal_Sprod [definition, in ConCaT.SETOID.SetoidPROD]
Equal_MonMor [definition, in ConCaT.SETOID.STRUCTURE.Monoid]
Equal_SubType_equiv [lemma, in ConCaT.SETOID.Setoid_prop]
Equal_NT [definition, in ConCaT.CATEGORY_THEORY.NT.Ntransformation]
Equal_PULB_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Equal_MonMor_equiv [lemma, in ConCaT.SETOID.STRUCTURE.Monoid]
Equal_Functor_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
equal_one_mor [section, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_hom_refl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Single_equiv [lemma, in ConCaT.SETOID.Single]
Equal_Arrs [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
equal_one_mor.b [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_One_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_hom_sym [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_hom_refl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Single_equiv [lemma, in ConCaT.SETOID.Single]
Equal_Tlist [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Equal_hom_refl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Tlist_equiv [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Equal_One_mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_hom_refl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_SubType_equiv [lemma, in ConCaT.SETOID.Setoid_prop]
Equal_Tlist_equiv [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Equal_Arrs_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_PULB_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Equal_Tlist [definition, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Equal_Sprod_equiv [lemma, in ConCaT.SETOID.SetoidPROD]
Equal_Single [definition, in ConCaT.SETOID.Single]
Equal_PULB_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Equal_Functor_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Equal_Sprod_equiv [lemma, in ConCaT.SETOID.SetoidPROD]
Equal_Arrs [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_MonMor [definition, in ConCaT.SETOID.STRUCTURE.Monoid]
Equal_hom_refl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
equal_one_mor [section, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_Discr_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_SubType_equiv [lemma, in ConCaT.SETOID.Setoid_prop]
equal_one_mor [section, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_hom_trans [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_One_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_Sprod_equiv [lemma, in ConCaT.SETOID.SetoidPROD]
Equal_SubType [definition, in ConCaT.SETOID.Setoid_prop]
Equal_Discr_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_PULB_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
equal_hom_equiv [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_One_mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_hom_trans [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_SubType [definition, in ConCaT.SETOID.Setoid_prop]
Equal_Sprod_equiv [lemma, in ConCaT.SETOID.SetoidPROD]
Equal_PULB_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
equal_hom_equiv [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_com_arrow [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Equal_hom_trans [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_com_arrow_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Equal_NT_equiv [lemma, in ConCaT.CATEGORY_THEORY.NT.Ntransformation]
Equal_Tlist_equiv [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Equal_Pmor_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Equal_Single_equiv [lemma, in ConCaT.SETOID.Single]
equal_hom_equiv [section, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Functor_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Equal_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Equal_com_arrow_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Equal_One_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_Tlist_equiv [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Equal_Discr_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_PULB_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Equal_Functor [definition, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Equal_Single [definition, in ConCaT.SETOID.Single]
Equal_Arrs_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Single [definition, in ConCaT.SETOID.Single]
Equal_Arrs_equiv [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_Functor_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Equal_Functor_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Functor]
Equal_SubType [definition, in ConCaT.SETOID.Setoid_prop]
equal_hom_equiv.a [variable, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_MonMor_equiv [lemma, in ConCaT.SETOID.STRUCTURE.Monoid]
Equal_com_arrow_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Equal_Tlist_equiv [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Equal_PULB_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Equal_com_arrow_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Equal_Discr_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_Discr_mor_equiv [lemma, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Equal_One_mor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.ONE]
Equal_PULB_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Equal_Single [definition, in ConCaT.SETOID.Single]
Equal_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Equal_Tlist_equiv [lemma, in ConCaT.SETOID.STRUCTURE.FreeMonoid]
Equal_Pmor [definition, in ConCaT.CATEGORY_THEORY.CATEGORY.PROD]
Equal_Sprod [definition, in ConCaT.SETOID.SetoidPROD]
Equal_MonMor [definition, in ConCaT.SETOID.STRUCTURE.Monoid]
Equal_Discr_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.Discr]
Equal_hom_refl [lemma, in ConCaT.CATEGORY_THEORY.CATEGORY.Hom_Equality]
Equal_PULB_mor [definition, in ConCaT.CATEGORY_THEORY.LIMITS.PULB]
Equal_com_arrow_equiv [lemma, in ConCaT.CATEGORY_THEORY.FUNCTOR.Comma]
Equal_NT_equiv [lemma, in