Library Ergo.CNFLazy

This contains the implementation of a CNF module on lazy literals.
Require Import Quote List Ergo OrderedType.
Require Import BinPos LLazy.
Require Import Sets.
Require Import Cnf DoubleNegUtils Setoid.
Require Export CNFLazyCommon.

The module CNFRAW

What the CNF module would be if it were operating on raw literals instead of well-formed literals. We define smart constructors for every logical construct (atomic, or, and, implication and equivalence).
Note that the proxy for f g is [[f;g]] and its negation is [[~f];[~g]] which corresponds to intuition, similarly for the other logical operators.
Module CNFRAW.
Import LLAZY.RAW.
Definition mk_lit atom b := Lit (Some atom, b).
Definition mk_true := ltrue.
Definition mk_false := lfalse.
Definition mk_or f g := Proxy
((f::g::nil)::nil)
(((mk_not f)::nil)::((mk_not g)::nil)::nil).
Definition mk_and f g := Proxy
((f::nil)::(g::nil)::nil)
(((mk_not f)::(mk_not g)::nil)::nil).
Definition mk_impl f g := mk_or (mk_not f) g.
Definition mk_iff f g := mk_and (mk_impl f g) (mk_impl g f).
End CNFRAW.

The module CNFLAZY

CNFLAZY will be be our CNF module on lazy literals. We start by including CNFLAZYCOMMON which defines the module L of literals as LLAZY, and the necessary sets, etc.
Include CNFLAZYCOMMON.

Import LLAZY. Import CNFRAW.

Typeclasses Opaque RAW.eq.
We can now lift the smart constructors of CNFRAW to LLAZY by proving that they build well-formed literals when their parameters are well-formed.
Property wf_mk_lit : idx b, wf_lit (mk_lit idx b).
Proof. intro; constructor. Qed.
Definition mk_lit atom b : formula :=
mk_literal (mk_lit atom b) (wf_mk_lit atom b).

Definition mk_true : formula := ltrue.
Definition mk_false : formula := lfalse.

Identity Coercion t_of_t_ : RAW.t >-> RAW.t_.

Lemma mk_not_size :
l, wf_lit l RAW.size (RAW.mk_not l) = RAW.size l.
Proof.
intros l Hl; destruct l; inversion Hl; simpl; auto.
Qed.

The constructor mk_or and mk_and can be lifted without issue. mk_impl can be defined in terms of mk_or and mk_and so it is straightforward as well.
Property wf_mk_or : (l l' : t), wf_lit (mk_or l l').
Proof.
intros [x Hx] [y Hy]; unfold mk_or; simpl; constructor.
reflexivity.
simpl; rewrite !RAW.mk_not_invol; reflexivity.
simpl; rewrite !mk_not_size; auto; omega.

intros l t0 Hl Ht0. inversion Hl; subst; try contradiction.
inversion Ht0; subst; simpl; auto.
destruct H; subst; simpl; auto; contradiction.
intros l t0 Hl Ht0. inversion Hl; subst.
inversion Ht0; simpl in *; subst; simpl; try apply wf_mk_not; intuition.
inversion Ht0; simpl in H; subst; simpl; try apply wf_mk_not; intuition.
Qed.
Definition mk_or (f g : t) : formula :=
mk_literal (mk_or f g) (wf_mk_or f g).

Property wf_mk_and : (l l' : t), wf_lit (mk_and l l').
Proof.
intros [x Hx] [y Hy]; unfold mk_and; simpl; constructor.
reflexivity.
simpl; rewrite !RAW.mk_not_invol; reflexivity.
simpl; rewrite !mk_not_size; auto; omega.

intros l t0 Hl Ht0. inversion Hl; subst; try contradiction.
inversion Ht0; subst; simpl; auto; contradiction.
inversion Ht0; subst; simpl; auto; contradiction.
intros l t0 Hl Ht0. inversion Hl; subst; try contradiction.
inversion Ht0; subst; simpl; try apply wf_mk_not; auto.
destruct H; simpl in *; subst; simpl; try apply wf_mk_not; intuition.
Qed.
Definition mk_and (f g : t) :=
mk_literal (mk_and f g) (wf_mk_and f g).

Property wf_mk_impl : (l l' : t), wf_lit (mk_impl l l').
Proof.
intros x y; unfold mk_impl; exact (wf_mk_or (mk_not x) y).
Qed.
Definition mk_impl (f g : t) :=
mk_literal (mk_impl f g) (wf_mk_impl f g).

The smart constructor for mk_iff is a bit less efficient than what we wished. Indeed, one would like to build the proxy [[f;g];[~f;~g]] for the formula f g. But then there is no way to choose a second parameter for the proxy that verifies the property with negation. Namely, negation is not involutive on such a proxy ; our workaround is thus to use mk_and and mk_impl which is correct but adds a level of proxy.
Property wf_mk_iff : (l l' : t), wf_lit (mk_iff l l').
Proof.
intros x y; unfold mk_iff;
exact (wf_mk_and (mk_impl _ _) (mk_impl _ _)).
Qed.
Definition mk_iff (f g : t) :=
mk_literal (mk_iff f g) (wf_mk_iff f g).

Finally, the make function just takes a formula (ie, a lazy literal) f and returns the singleton clause {{f}}.
Definition make (f : formula) : cset := singleton {f}.
Property make_1 :
f, make f [=] singleton {f}.
Proof.
intro f; reflexivity.
Qed.

Definition cfl (ll : list (list L.t)) : cset :=
Property cfl_1 :
ll, cfl ll [=]
(fold_right (fun l cl
Proof.
intros; reflexivity.
Qed.

Definition interp : varmaps formula Prop := interp.

Finally, we define a conversion function that applies our smart constructors recursively in order to build a formula out of a general formula form.
We also include a proof that the converted formula is equivalent to the original formula.
Module Conversion.
Fixpoint mk_form (f : fform) : formula :=
match f with
| FVar idxmk_lit (LITINDEX.Atom idx) true
| FNot (FVar idx) ⇒ mk_lit (LITINDEX.Atom idx) false
| FEq s1 s2mk_lit (LITINDEX.Equation s1 s2) true
| FNot (FEq s1 s2) ⇒ mk_lit (LITINDEX.Equation s1 s2) false
| FTruemk_true
| FFalsemk_false
| FAnd f gmk_and (mk_form f) (mk_form g)
| FOr f gmk_or (mk_form f) (mk_form g)
| FNot fmk_not (mk_form f)
| FImp f gmk_impl (mk_form f) (mk_form g)
| FIff f gmk_iff (mk_form f) (mk_form g)
end.

Lemma mk_not_not :
v f, ~~(interp v f ¬interp v (mk_not f)).
Proof.
exact mk_not_interp.
Qed.
Corollary not_mk_not :
v f, ~~(~(interp v f) interp v (mk_not f)).
Proof.
intros v f N.
apply (mk_not_not v f); intro R; crewrite R N.
apply (double_not (interp v (mk_not f))); intro R; crewrite R N.
apply N; reflexivity.
Qed.

Ltac aapply H := apply H; try assumption.
Theorem mk_form_equiv :
v f, Ergo.well_typed_formula v f
~~(finterp v f interp v (mk_form f)).
Proof.
intros v; induction f; unfold interp; simpl;
try destruct IHf as [IH1 IH2]; intro Hwt; inversion_clear Hwt.
vm_compute; tauto.
intro N; apply N; symmetry.
unfold LLAZY.interp, RAW.interp; simpl.
apply ModelsRingExt.eq_wt_iff; auto.
rewrite <- (Term.has_type_is_type_of _ _ _ _ H); exact H.
rewrite <- (Term.has_type_is_type_of _ _ _ _ H0); exact H0.
vm_compute; tauto.
vm_compute; tauto.
intro N; aapply IHf1; intro IH1; aapply IHf2; intro IH2;
clear IHf1 IHf2.
apply N; rewrite IH1; rewrite IH2; clear N IH1 IH2.
unfold LLAZY.interp; simpl; intuition.
intro N; aapply IHf1; intro IH1; aapply IHf2; intro IH2;
clear IHf1 IHf2.
apply N; rewrite IH1; rewrite IH2; clear N IH1 IH2.
unfold LLAZY.interp; simpl; intuition.
intro N; aapply IHf; intro R; crewrite R N.
apply (mk_not_not v (mk_form f));
intro R; crewrite R N.
revert N; destruct f; apply double_not.
intro N; aapply IHf1; intro IH1; aapply IHf2; intro IH2;
clear IHf1 IHf2.
apply (imp_def (finterp v f1) (finterp v f2));
intro R; crewrite R N; rewrite IH2 in N; rewrite IH1 in N.
apply (not_mk_not v (mk_form f1)); intro R; crewrite R N.
apply N; clear IH1 IH2 N.
unfold CNFRAW.mk_impl, interp, L.interp, RAW.interp; simpl.
intuition.
intro N; aapply IHf1; intro IH1; aapply IHf2; intro IH2;
clear IHf1 IHf2.
unfold iff at 2 in N.
apply (imp_def (finterp v f1) (finterp v f2)); intro R1.
apply (imp_def (finterp v f2) (finterp v f1)); intro R2.
crewrite R1 N; crewrite R2 N; rewrite IH1 in N; rewrite IH2 in N.
apply (not_mk_not v (mk_form f1)); intro R; crewrite R N.
apply (not_mk_not v (mk_form f2)); intro R; crewrite R N.
apply N; clear N IH1 IH2.
unfold CNFRAW.mk_iff, L.interp, RAW.interp; simpl. intuition.
Qed.

Corollary cnf :
v f, Ergo.well_typed_formula v f
~~(finterp v f interp v (mk_form f)).
Proof.
exact mk_form_equiv.
Qed.
End Conversion.
End CNFLAZY.