# Library Goedel.checkPrf

Require Import primRec.
Require Import codeFreeVar.
Require Import codeSubFormula.
Require Import cPair.
Require Import Arith.
Require Import code.
Require Import folProp.
Require Import extEqualNat.
Require Import wellFormed.
Require Import folProof.
Require Import prLogic.

Section Check_Proof.

Variable L : Language.
Variable codeF : Functions L -> nat.
Variable codeR : Relations L -> nat.
Variable codeArityF : nat -> nat.
Variable codeArityR : nat -> nat.
Hypothesis codeArityFIsPR : isPR 1 codeArityF.
Hypothesis
codeArityFIsCorrect1 :
forall f : Functions L, codeArityF (codeF f) = S (arity L (inr _ f)).
Hypothesis
codeArityFIsCorrect2 :
forall n : nat, codeArityF n <> 0 -> exists f : Functions L, codeF f = n.
Hypothesis codeArityRIsPR : isPR 1 codeArityR.
Hypothesis
codeArityRIsCorrect1 :
forall r : Relations L, codeArityR (codeR r) = S (arity L (inl _ r)).
Hypothesis
codeArityRIsCorrect2 :
forall n : nat, codeArityR n <> 0 -> exists r : Relations L, codeR r = n.

Hypothesis codeFInj : forall f g : Functions L, codeF f = codeF g -> f = g.
Hypothesis codeRInj : forall R S : Relations L, codeR R = codeR S -> R = S.

Let Term := Term L.
Let Terms := Terms L.
Let var := var L.
Let apply := apply L.
Let Formula := Formula L.
Let equal := equal L.
Let atomic := atomic L.
Let impH := impH L.
Let notH := notH L.
Let forallH := forallH L.
Let wellFormedTerm := wellFormedTerm codeArityF.
Let wellFormedFormula := wellFormedFormula codeArityF codeArityR.
Let Prf := Prf L.

Definition checkPrfAXM (p recs : nat) :=
switchPR (charFunction 2 beq_nat (cPairPi2 (cPairPi2 p)) (cPairPi1 p))
(S (S (cPair (cPairPi1 p) 0))) 0.

Lemma checkPrfAXMIsPR : isPR 2 checkPrfAXM.
Proof.
unfold checkPrfAXM in |- *.
apply
filter10IsPR
with
(g := fun p : nat =>
switchPR
(charFunction 2 beq_nat (cPairPi2 (cPairPi2 p)) (cPairPi1 p))
(S (S (cPair (cPairPi1 p) 0))) 0).
apply
compose1_3IsPR
with
(f1 := fun p : nat =>
charFunction 2 beq_nat (cPairPi2 (cPairPi2 p)) (cPairPi1 p))
(f2 := fun p : nat => S (S (cPair (cPairPi1 p) 0)))
(f3 := fun p : nat => 0).
apply compose1_2IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR.
apply cPairPi2IsPR.
apply cPairPi2IsPR.
apply cPairPi1IsPR.
apply eqIsPR.
apply compose1_1IsPR with (f := fun p : nat => S (cPair (cPairPi1 p) 0)).
apply compose1_1IsPR with (f := fun p : nat => cPair (cPairPi1 p) 0).
apply compose1_2IsPR with (f' := fun p : nat => 0).
apply cPairPi1IsPR.
apply const1_NIsPR.
apply cPairIsPR.
apply succIsPR.
apply succIsPR.
apply const1_NIsPR.
apply switchIsPR.
Qed.

Definition checkPrfMP (p recs : nat) :=
switchPR
(wellFormedFormula (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p)))) *
(charFunction 2 beq_nat (cPairPi1 (cPairPi1 (cPairPi2 (cPairPi2 p))))
(codeImp (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p)))) (cPairPi1 p)) *
(codeNth (p - S (cPairPi1 (cPairPi2 (cPairPi2 p)))) recs *
codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs)))
(S
(codeApp
(pred (codeNth (p - S (cPairPi1 (cPairPi2 (cPairPi2 p)))) recs))
(pred (codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs))))
0.

Lemma checkPrfMPIsPR : isPR 2 checkPrfMP.
Proof.
unfold checkPrfMP in |- *.
apply
compose2_3IsPR
with
(f1 := fun p recs : nat =>
wellFormedFormula (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p)))) *
(charFunction 2 beq_nat
(cPairPi1 (cPairPi1 (cPairPi2 (cPairPi2 p))))
(codeImp (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi1 p)) *
(codeNth (p - S (cPairPi1 (cPairPi2 (cPairPi2 p)))) recs *
codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs)))
(f2 := fun p recs : nat =>
S
(codeApp
(pred
(codeNth (p - S (cPairPi1 (cPairPi2 (cPairPi2 p)))) recs))
(pred
(codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs))))
(f3 := fun p recs : nat => 0).
apply
compose2_2IsPR
with
(f := fun p recs : nat =>
wellFormedFormula (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p)))))
(g := fun p recs : nat =>
charFunction 2 beq_nat
(cPairPi1 (cPairPi1 (cPairPi2 (cPairPi2 p))))
(codeImp (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi1 p)) *
(codeNth (p - S (cPairPi1 (cPairPi2 (cPairPi2 p)))) recs *
codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs)).
apply
filter10IsPR
with
(g := fun p : nat =>
wellFormedFormula (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))).
apply
compose1_1IsPR
with (f := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p)))).
apply
compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi2IsPR.
apply cPairPi1IsPR.
unfold wellFormedFormula in |- *.
apply wellFormedFormulaIsPR.
apply codeArityFIsPR.
apply codeArityRIsPR.
apply
compose2_2IsPR
with
(f := fun p recs : nat =>
charFunction 2 beq_nat
(cPairPi1 (cPairPi1 (cPairPi2 (cPairPi2 p))))
(codeImp (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi1 p)))
(g := fun p recs : nat =>
codeNth (p - S (cPairPi1 (cPairPi2 (cPairPi2 p)))) recs *
codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs).
apply
filter10IsPR
with
(g := fun p : nat =>
charFunction 2 beq_nat
(cPairPi1 (cPairPi1 (cPairPi2 (cPairPi2 p))))
(codeImp (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi1 p))).
apply
compose1_2IsPR
with
(f := fun p : nat => cPairPi1 (cPairPi1 (cPairPi2 (cPairPi2 p))))
(f' := fun p : nat =>
codeImp (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p)))) (cPairPi1 p)).
apply
compose1_1IsPR with (f := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi1IsPR.
apply cPairPi1IsPR.
apply
compose1_2IsPR
with (f := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p)))).
apply
compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi2IsPR.
apply cPairPi1IsPR.
apply cPairPi1IsPR.
apply codeImpIsPR.
apply eqIsPR.
apply
compose2_2IsPR
with
(f := fun p recs : nat =>
codeNth (p - S (cPairPi1 (cPairPi2 (cPairPi2 p)))) recs)
(g := fun p recs : nat =>
codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs).
apply callIsPR with (g := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi1IsPR.
apply callIsPR with (g := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi2IsPR.
apply multIsPR.
apply multIsPR.
apply multIsPR.
apply
compose2_1IsPR
with
(f := fun p recs : nat =>
codeApp
(pred (codeNth (p - S (cPairPi1 (cPairPi2 (cPairPi2 p)))) recs))
(pred (codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs))).
apply
compose2_2IsPR
with
(f := fun p recs : nat =>
pred (codeNth (p - S (cPairPi1 (cPairPi2 (cPairPi2 p)))) recs))
(g := fun p recs : nat =>
pred (codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs)).
apply
compose2_1IsPR
with
(f := fun p recs : nat =>
codeNth (p - S (cPairPi1 (cPairPi2 (cPairPi2 p)))) recs).
apply callIsPR with (g := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi1IsPR.
apply predIsPR.
apply
compose2_1IsPR
with
(f := fun p recs : nat =>
codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs).
apply callIsPR with (g := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi2IsPR.
apply predIsPR.
apply codeAppIsPR.
apply succIsPR.
apply filter10IsPR with (g := fun _ : nat => 0).
apply const1_NIsPR.
apply switchIsPR.
Qed.

Definition checkPrfGEN (p recs : nat) :=
switchPR
(charFunction 2 beq_nat
(cPair 3
(cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))))
(cPairPi1 p) *
(codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs *
(1 -
codeIn (cPairPi1 (cPairPi2 (cPairPi2 p)))
(codeFreeVarListFormula
(pred (codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs))))))
(codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs) 0.

Lemma checkPrfGENIsPR : isPR 2 checkPrfGEN.
Proof.
unfold checkPrfGEN in |- *.
apply
compose2_3IsPR
with
(f1 := fun p recs : nat =>
charFunction 2 beq_nat
(cPair 3
(cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))))
(cPairPi1 p) *
(codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs *
(1 -
codeIn (cPairPi1 (cPairPi2 (cPairPi2 p)))
(codeFreeVarListFormula
(pred
(codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs))))))
(f2 := fun p recs : nat =>
codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs)
(f3 := fun p recs : nat => 0).
apply
compose2_2IsPR
with
(f := fun p recs : nat =>
charFunction 2 beq_nat
(cPair 3
(cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))))
(cPairPi1 p))
(g := fun p recs : nat =>
codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs *
(1 -
codeIn (cPairPi1 (cPairPi2 (cPairPi2 p)))
(codeFreeVarListFormula
(pred
(codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs))))).
apply
filter10IsPR
with
(g := fun p : nat =>
charFunction 2 beq_nat
(cPair 3
(cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))))
(cPairPi1 p)).
apply
compose1_2IsPR
with
(f := fun p : nat =>
cPair 3
(cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))))
(f' := fun p : nat => cPairPi1 p).
apply
compose1_2IsPR
with
(f := fun p : nat => 3)
(f' := fun p : nat =>
cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))).
apply const1_NIsPR.
apply
compose1_2IsPR
with
(f := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p)))
(f' := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p)))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi1IsPR.
apply
compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi2IsPR.
apply cPairPi1IsPR.
apply cPairIsPR.
apply cPairIsPR.
apply cPairPi1IsPR.
apply eqIsPR.
apply
compose2_2IsPR
with
(f := fun p recs : nat =>
codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs)
(g := fun p recs : nat =>
1 -
codeIn (cPairPi1 (cPairPi2 (cPairPi2 p)))
(codeFreeVarListFormula
(pred
(codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs)))).
apply callIsPR with (g := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi2IsPR.
apply
compose2_2IsPR
with
(f := fun p recs : nat => 1)
(g := fun p recs : nat =>
codeIn (cPairPi1 (cPairPi2 (cPairPi2 p)))
(codeFreeVarListFormula
(pred
(codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs)))).
apply filter10IsPR with (g := fun _ : nat => 1).
apply const1_NIsPR.
apply
compose2_2IsPR
with
(f := fun p recs : nat => cPairPi1 (cPairPi2 (cPairPi2 p)))
(g := fun p recs : nat =>
codeFreeVarListFormula
(pred (codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs))).
apply
filter10IsPR with (g := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi1IsPR.
apply
compose2_1IsPR
with
(f := fun p recs : nat =>
pred (codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs)).
apply
compose2_1IsPR
with
(f := fun p recs : nat =>
codeNth (p - S (cPairPi2 (cPairPi2 (cPairPi2 p)))) recs).
apply callIsPR with (g := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi2IsPR.
apply predIsPR.
apply codeFreeVarListFormulaIsPR.
apply codeInIsPR.
apply minusIsPR.
apply multIsPR.
apply multIsPR.
apply callIsPR with (g := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi2IsPR.
apply filter10IsPR with (g := fun _ : nat => 0).
apply const1_NIsPR.
apply switchIsPR.
Qed.

Definition checkPrfIMP1 (p recs : nat) :=
let A := cPairPi1 (cPairPi2 (cPairPi2 p)) in
let B := cPairPi2 (cPairPi2 (cPairPi2 p)) in
charFunction 2 beq_nat (cPair 1 (cPair A (cPair 1 (cPair B A))))
(cPairPi1 p).

Lemma checkPrfIMP1IsPR : isPR 2 checkPrfIMP1.
Proof.
unfold checkPrfIMP1 in |- *.
apply
filter10IsPR
with
(g := fun p : nat =>
charFunction 2 beq_nat
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPair 1
(cPair (cPairPi2 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 p)))))))
(cPairPi1 p)).
assert (isPR 1 (fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p)))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi1IsPR.
assert (isPR 1 (fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 p)))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi2IsPR.
apply
compose1_2IsPR
with
(f := fun p : nat =>
cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPair 1
(cPair (cPairPi2 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 p))))))).
apply
compose1_2IsPR
with
(f := fun p : nat => 1)
(f' := fun p : nat =>
cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPair 1
(cPair (cPairPi2 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 p)))))).
apply const1_NIsPR.
apply
compose1_2IsPR
with
(f := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p)))
(f' := fun p : nat =>
cPair 1
(cPair (cPairPi2 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 p))))).
assumption.
apply
compose1_2IsPR
with
(f := fun p : nat => 1)
(f' := fun p : nat =>
cPair (cPairPi2 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 p)))).
apply const1_NIsPR.
apply
compose1_2IsPR
with
(f := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 p)))
(f' := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p))).
assumption.
assumption.
apply cPairIsPR.
apply cPairIsPR.
apply cPairIsPR.
apply cPairIsPR.
apply cPairPi1IsPR.
apply eqIsPR.
Qed.

Definition checkPrfIMP2 (p recs : nat) :=
let A := cPairPi1 (cPairPi2 (cPairPi2 p)) in
let B := cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))) in
let C := cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))) in
charFunction 2 beq_nat
(cPair 1
(cPair (cPair 1 (cPair A (cPair 1 (cPair B C))))
(cPair 1 (cPair (cPair 1 (cPair A B)) (cPair 1 (cPair A C))))))
(cPairPi1 p).

Lemma checkPrfIMP2IsPR : isPR 2 checkPrfIMP2.
Proof.
unfold checkPrfIMP2 in |- *.
apply
filter10IsPR
with
(g := fun p : nat =>
charFunction 2 beq_nat
(cPair 1
(cPair
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPair 1
(cPair
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))))))
(cPair 1
(cPair
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))))
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))))))))
(cPairPi1 p)).
assert (isPR 1 (fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p)))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi1IsPR.
assert (isPR 1 (fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))).
apply
compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi2IsPR.
apply cPairPi1IsPR.
assert (isPR 1 (fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))).
apply
compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi2IsPR.
apply cPairPi2IsPR.
apply
compose1_2IsPR
with
(f := fun p : nat =>
cPair 1
(cPair
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))))))
(cPair 1
(cPair
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))))
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p)))))))))).
replace
(fun p : nat =>
cPair 1
(cPair
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))))))
(cPair 1
(cPair
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))))
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p)))))))))) with
(fun p : nat =>
codeImp
(codeImp (cPairPi1 (cPairPi2 (cPairPi2 p)))
(codeImp (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))))
(codeImp
(codeImp (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p)))))
(codeImp (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p)))))));
[ idtac | reflexivity ].
apply
compose1_2IsPR
with
(f := fun p : nat =>
codeImp (cPairPi1 (cPairPi2 (cPairPi2 p)))
(codeImp (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))))
(f' := fun p : nat =>
codeImp
(codeImp (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p)))))
(codeImp (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p)))))).
apply
compose1_2IsPR
with
(f := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p)))
(f' := fun p : nat =>
codeImp (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))).
assumption.
apply
compose1_2IsPR
with
(f := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(f' := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p)))).
assumption.
assumption.
apply codeImpIsPR.
apply codeImpIsPR.
apply
compose1_2IsPR
with
(f := fun p : nat =>
codeImp (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p)))))
(f' := fun p : nat =>
codeImp (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))).
apply
compose1_2IsPR
with
(f := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p)))
(f' := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p)))).
assumption.
assumption.
apply codeImpIsPR.
apply
compose1_2IsPR
with
(f := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p)))
(f' := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p)))).
assumption.
assumption.
apply codeImpIsPR.
apply codeImpIsPR.
apply codeImpIsPR.
apply cPairPi1IsPR.
apply eqIsPR.
Qed.

Definition checkPrfCP (p recs : nat) :=
let A := cPairPi1 (cPairPi2 (cPairPi2 p)) in
let B := cPairPi2 (cPairPi2 (cPairPi2 p)) in
charFunction 2 beq_nat
(cPair 1
(cPair (cPair 1 (cPair (cPair 2 A) (cPair 2 B))) (cPair 1 (cPair B A))))
(cPairPi1 p).

Lemma checkPrfCPIsPR : isPR 2 checkPrfCP.
Proof.
unfold checkPrfCP in |- *.
apply
filter10IsPR
with
(g := fun p : nat =>
charFunction 2 beq_nat
(cPair 1
(cPair
(cPair 1
(cPair (cPair 2 (cPairPi1 (cPairPi2 (cPairPi2 p))))
(cPair 2 (cPairPi2 (cPairPi2 (cPairPi2 p))))))
(cPair 1
(cPair (cPairPi2 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 p)))))))
(cPairPi1 p)).
assert (isPR 1 (fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p)))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi1IsPR.
assert (isPR 1 (fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 p)))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi2IsPR.
apply
compose1_2IsPR
with
(f := fun p : nat =>
cPair 1
(cPair
(cPair 1
(cPair (cPair 2 (cPairPi1 (cPairPi2 (cPairPi2 p))))
(cPair 2 (cPairPi2 (cPairPi2 (cPairPi2 p))))))
(cPair 1
(cPair (cPairPi2 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 p))))))).
replace
(fun p : nat =>
cPair 1
(cPair
(cPair 1
(cPair (cPair 2 (cPairPi1 (cPairPi2 (cPairPi2 p))))
(cPair 2 (cPairPi2 (cPairPi2 (cPairPi2 p))))))
(cPair 1
(cPair (cPairPi2 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 p))))))) with
(fun p : nat =>
codeImp
(codeImp (codeNot (cPairPi1 (cPairPi2 (cPairPi2 p))))
(codeNot (cPairPi2 (cPairPi2 (cPairPi2 p)))))
(codeImp (cPairPi2 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 p))))); [ idtac | reflexivity ].
apply
compose1_2IsPR
with
(f := fun p : nat =>
codeImp (codeNot (cPairPi1 (cPairPi2 (cPairPi2 p))))
(codeNot (cPairPi2 (cPairPi2 (cPairPi2 p)))))
(f' := fun p : nat =>
codeImp (cPairPi2 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 p)))).
apply
compose1_2IsPR
with
(f := fun p : nat => codeNot (cPairPi1 (cPairPi2 (cPairPi2 p))))
(f' := fun p : nat => codeNot (cPairPi2 (cPairPi2 (cPairPi2 p)))).
apply
compose1_1IsPR with (f := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p))).
assumption.
apply codeNotIsPR.
apply
compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 p))).
assumption.
apply codeNotIsPR.
apply codeImpIsPR.
apply
compose1_2IsPR
with
(f := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 p)))
(f' := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p))).
assumption.
assumption.
apply codeImpIsPR.
apply codeImpIsPR.
apply cPairPi1IsPR.
apply eqIsPR.
Qed.

Definition checkPrfFA1 (p recs : nat) :=
let A := cPairPi1 (cPairPi2 (cPairPi2 p)) in
let v := cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))) in
let t := cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))) in
wellFormedTerm t *
charFunction 2 beq_nat
(cPair 1 (cPair (cPair 3 (cPair v A)) (codeSubFormula A v t)))
(cPairPi1 p).

Lemma checkPrfFA1IsPR : isPR 2 checkPrfFA1.
Proof.
unfold checkPrfFA1 in |- *.
apply
filter10IsPR
with
(g := fun p : nat =>
wellFormedTerm (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p)))) *
charFunction 2 beq_nat
(cPair 1
(cPair
(cPair 3
(cPair (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi1 (cPairPi2 (cPairPi2 p)))))
(codeSubFormula (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p)))))))
(cPairPi1 p)).
assert (isPR 1 (fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p)))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi1IsPR.
assert (isPR 1 (fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))).
apply
compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi2IsPR.
apply cPairPi1IsPR.
assert (isPR 1 (fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))).
apply
compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi2IsPR.
apply cPairPi2IsPR.
apply
compose1_2IsPR
with
(f := fun p : nat =>
wellFormedTerm (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p)))))
(f' := fun p : nat =>
charFunction 2 beq_nat
(cPair 1
(cPair
(cPair 3
(cPair (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi1 (cPairPi2 (cPairPi2 p)))))
(codeSubFormula (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p)))))))
(cPairPi1 p)).
apply
compose1_1IsPR
with (f := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p)))).
assumption.
unfold wellFormedTerm in |- *.
apply wellFormedTermIsPR.
apply codeArityFIsPR.
apply
compose1_2IsPR
with
(f := fun p : nat =>
cPair 1
(cPair
(cPair 3
(cPair (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi1 (cPairPi2 (cPairPi2 p)))))
(codeSubFormula (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))))).
replace
(fun p : nat =>
cPair 1
(cPair
(cPair 3
(cPair (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi1 (cPairPi2 (cPairPi2 p)))))
(codeSubFormula (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))))) with
(fun p : nat =>
codeImp
(cPair 3
(cPair (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi1 (cPairPi2 (cPairPi2 p)))))
(codeSubFormula (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))));
[ idtac | reflexivity ].
apply
compose1_2IsPR
with
(f := fun p : nat =>
cPair 3
(cPair (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi1 (cPairPi2 (cPairPi2 p)))))
(f' := fun p : nat =>
codeSubFormula (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))).
apply
compose1_2IsPR
with
(f := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(f' := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p)))
(g := fun a b : nat => cPair 3 (cPair a b)).
assumption.
assumption.
apply codeForallIsPR.
apply
compose1_3IsPR
with
(f1 := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p)))
(f2 := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(f3 := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))));
try assumption.
apply codeSubFormulaIsPR.
apply codeImpIsPR.
apply cPairPi1IsPR.
apply eqIsPR.
apply multIsPR.
Qed.

Definition checkPrfFA2 (p recs : nat) :=
let A := cPairPi1 (cPairPi2 (cPairPi2 p)) in
let v := cPairPi2 (cPairPi2 (cPairPi2 p)) in
(1 - codeIn v (codeFreeVarFormula A)) *
charFunction 2 beq_nat (cPair 1 (cPair A (cPair 3 (cPair v A))))
(cPairPi1 p).

Lemma checkPrfFA2IsPR : isPR 2 checkPrfFA2.
Proof.
unfold checkPrfFA2 in |- *.
apply
filter10IsPR
with
(g := fun p : nat =>
(1 -
codeIn (cPairPi2 (cPairPi2 (cPairPi2 p)))
(codeFreeVarFormula (cPairPi1 (cPairPi2 (cPairPi2 p))))) *
charFunction 2 beq_nat
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 p)))))))
(cPairPi1 p)).
assert (isPR 1 (fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p)))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi1IsPR.
assert (isPR 1 (fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 p)))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi2IsPR.
apply
compose1_2IsPR
with
(f := fun p : nat =>
1 -
codeIn (cPairPi2 (cPairPi2 (cPairPi2 p)))
(codeFreeVarFormula (cPairPi1 (cPairPi2 (cPairPi2 p)))))
(f' := fun p : nat =>
charFunction 2 beq_nat
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 p)))))))
(cPairPi1 p)).
apply
compose1_2IsPR
with
(f := fun p : nat => 1)
(f' := fun p : nat =>
codeIn (cPairPi2 (cPairPi2 (cPairPi2 p)))
(codeFreeVarFormula (cPairPi1 (cPairPi2 (cPairPi2 p))))).
apply const1_NIsPR.
apply
compose1_2IsPR
with
(f := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 p)))
(f' := fun p : nat =>
codeFreeVarFormula (cPairPi1 (cPairPi2 (cPairPi2 p)))).
assumption.
apply
compose1_1IsPR with (f := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p))).
assumption.
apply codeFreeVarFormulaIsPR.
apply codeInIsPR.
apply minusIsPR.
apply
compose1_2IsPR
with
(f := fun p : nat =>
cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 p))))))).
replace
(fun p : nat =>
cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 p))))))) with
(fun p : nat =>
codeImp (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 p)))))); [ idtac | reflexivity ].
apply
compose1_2IsPR
with
(f := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p)))
(f' := fun p : nat =>
cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 p))))).
assumption.
apply
compose1_2IsPR
with
(f := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 p)))
(f' := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p)))
(g := fun a b : nat => cPair 3 (cPair a b)).
assumption.
assumption.
apply codeForallIsPR.
apply codeImpIsPR.
apply cPairPi1IsPR.
apply eqIsPR.
apply multIsPR.
Qed.

Definition checkPrfFA3 (p recs : nat) :=
let A := cPairPi1 (cPairPi2 (cPairPi2 p)) in
let B := cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))) in
let v := cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))) in
charFunction 2 beq_nat
(cPair 1
(cPair (cPair 3 (cPair v (cPair 1 (cPair A B))))
(cPair 1 (cPair (cPair 3 (cPair v A)) (cPair 3 (cPair v B))))))
(cPairPi1 p).

Lemma checkPrfFA3IsPR : isPR 2 checkPrfFA3.
Proof.
unfold checkPrfFA3 in |- *.
apply
filter10IsPR
with
(g := fun p : nat =>
charFunction 2 beq_nat
(cPair 1
(cPair
(cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))))))
(cPair 1
(cPair
(cPair 3
(cPair
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi1 (cPairPi2 (cPairPi2 p)))))
(cPair 3
(cPair
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))))))))
(cPairPi1 p)).
assert (isPR 1 (fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p)))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi1IsPR.
assert (isPR 1 (fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))).
apply
compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi2IsPR.
apply cPairPi1IsPR.
assert (isPR 1 (fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))).
apply
compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply cPairPi2IsPR.
apply cPairPi2IsPR.
apply
compose1_2IsPR
with
(f := fun p : nat =>
cPair 1
(cPair
(cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))))))
(cPair 1
(cPair
(cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi1 (cPairPi2 (cPairPi2 p)))))
(cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p)))))))))).
replace
(fun p : nat =>
cPair 1
(cPair
(cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))))))
(cPair 1
(cPair
(cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi1 (cPairPi2 (cPairPi2 p)))))
(cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p)))))))))) with
(fun p : nat =>
codeImp
(cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(codeImp (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p)))))))
(codeImp
(cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi1 (cPairPi2 (cPairPi2 p)))))
(cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))))));
[ idtac | reflexivity ].
apply
compose1_2IsPR
with
(f := fun p : nat =>
cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(codeImp (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p)))))))
(f' := fun p : nat =>
codeImp
(cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi1 (cPairPi2 (cPairPi2 p)))))
(cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))))).
apply
compose1_2IsPR
with
(f := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(f' := fun p : nat =>
codeImp (cPairPi1 (cPairPi2 (cPairPi2 p)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p)))))
(g := fun a b : nat => cPair 3 (cPair a b)).
assumption.
apply
compose1_2IsPR
with
(f := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p)))
(f' := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p)))).
assumption.
assumption.
apply codeImpIsPR.
apply codeForallIsPR.
apply
compose1_2IsPR
with
(f := fun p : nat =>
cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi1 (cPairPi2 (cPairPi2 p)))))
(f' := fun p : nat =>
cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p)))))).
apply
compose1_2IsPR
with
(f := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(f' := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 p)))
(g := fun a b : nat => cPair 3 (cPair a b)).
assumption.
assumption.
apply codeForallIsPR.
apply
compose1_2IsPR
with
(f := fun p : nat => cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(f' := fun p : nat => cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 p))))
(g := fun a b : nat => cPair 3 (cPair a b)).
assumption.
assumption.
apply codeForallIsPR.
apply codeImpIsPR.
apply codeImpIsPR.
apply cPairPi1IsPR.
apply eqIsPR.
Qed.

Definition checkPrfEQ1 (p recs : nat) :=
charFunction 2 beq_nat (cPairPi2 (cPairPi2 p)) 0 *
charFunction 2 beq_nat
(codeFormula L codeF codeR (fol.equal L (fol.var L 0) (fol.var L 0)))
(cPairPi1 p).

Lemma checkPrfEQnIsPR :
forall n : nat,
isPR 2
(fun p recs : nat =>
charFunction 2 beq_nat (cPairPi2 (cPairPi2 p)) 0 *
charFunction 2 beq_nat n (cPairPi1 p)).
Proof.
unfold checkPrfEQ1 in |- *.
intros.
apply
filter10IsPR
with
(g := fun p : nat =>
charFunction 2 beq_nat (cPairPi2 (cPairPi2 p)) 0 *
charFunction 2 beq_nat n (cPairPi1 p)).
apply
compose1_2IsPR
with
(f := fun p : nat => charFunction 2 beq_nat (cPairPi2 (cPairPi2 p)) 0)
(f' := fun p : nat => charFunction 2 beq_nat n (cPairPi1 p)).
apply
compose1_2IsPR
with (f := fun p : nat => cPairPi2 (cPairPi2 p)) (f' := fun p : nat => 0).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply const1_NIsPR.
apply eqIsPR.
apply compose1_2IsPR with (f := fun p : nat => n).
apply const1_NIsPR.
apply cPairPi1IsPR.
apply eqIsPR.
apply multIsPR.
Qed.

Lemma checkPrfEQ1IsPR : isPR 2 checkPrfEQ1.
Proof.
unfold checkPrfEQ1 in |- *.
apply checkPrfEQnIsPR.
Qed.

Definition checkPrfEQ2 (p recs : nat) :=
charFunction 2 beq_nat (cPairPi2 (cPairPi2 p)) 0 *
charFunction 2 beq_nat
(codeFormula L codeF codeR
(fol.impH L (fol.equal L (fol.var L 0) (fol.var L 1))
(fol.equal L (fol.var L 1) (fol.var L 0))))
(cPairPi1 p).

Lemma checkPrfEQ2IsPR : isPR 2 checkPrfEQ2.
Proof.
unfold checkPrfEQ2 in |- *.
apply checkPrfEQnIsPR.
Qed.

Definition checkPrfEQ3 (p recs : nat) :=
charFunction 2 beq_nat (cPairPi2 (cPairPi2 p)) 0 *
charFunction 2 beq_nat
(codeFormula L codeF codeR
(fol.impH L (fol.equal L (fol.var L 0) (fol.var L 1))
(fol.impH L (fol.equal L (fol.var L 1) (fol.var L 2))
(fol.equal L (fol.var L 0) (fol.var L 2)))))
(cPairPi1 p).

Lemma checkPrfEQ3IsPR : isPR 2 checkPrfEQ3.
Proof.
unfold checkPrfEQ3 in |- *.
apply checkPrfEQnIsPR.
Qed.

Definition codeAxmEqHelp (n f : nat) : nat :=
nat_rec (fun _ => nat) f
(fun m rec : nat =>
cPair 1
(cPair (cPair 0 (cPair (cPair 0 (m + m)) (cPair 0 (S (m + m))))) rec))
n.

Lemma codeAxmEqHelpIsPR : isPR 2 codeAxmEqHelp.
Proof.
unfold codeAxmEqHelp in |- *.
apply
ind1ParamIsPR
with
(g := fun f : nat => f)
(f := fun m rec f : nat =>
cPair 1
(cPair (cPair 0 (cPair (cPair 0 (m + m)) (cPair 0 (S (m + m)))))
rec)).
apply
filter110IsPR
with
(g := fun m rec : nat =>
codeImp (cPair 0 (cPair (cPair 0 (m + m)) (cPair 0 (S (m + m)))))
rec).
apply
compose2_2IsPR
with
(f := fun m rec : nat =>
cPair 0 (cPair (cPair 0 (m + m)) (cPair 0 (S (m + m)))))
(g := fun m rec : nat => rec).
apply
filter10IsPR
with
(g := fun m : nat =>
cPair 0 (cPair (cPair 0 (m + m)) (cPair 0 (S (m + m))))).
assert
(forall g : nat -> nat, isPR 1 g -> isPR 1 (fun a : nat => cPair 0 (g a))).
intros.
apply compose1_2IsPR with (f := fun a : nat => 0).
apply const1_NIsPR.
assumption.
apply cPairIsPR.
apply
H with (g := fun m : nat => cPair (cPair 0 (m + m)) (cPair 0 (S (m + m)))).
apply
compose1_2IsPR
with
(f := fun m : nat => cPair 0 (m + m))
(f' := fun m : nat => cPair 0 (S (m + m))).
apply H with (g := fun m : nat => m + m).
apply compose1_2IsPR with (f := fun m : nat => m) (f' := fun m : nat => m).
apply idIsPR.
apply idIsPR.
apply plusIsPR.
apply H with (g := fun m : nat => S (m + m)).
apply compose1_1IsPR with (f := fun m : nat => m + m).
apply compose1_2IsPR with (f := fun m : nat => m) (f' := fun m : nat => m).
apply idIsPR.
apply idIsPR.
apply plusIsPR.
apply succIsPR.
apply cPairIsPR.
apply pi2_2IsPR.
apply codeImpIsPR.
apply idIsPR.
Qed.

Definition codeNVars1 (n : nat) : nat :=
nat_rec (fun _ => nat) 0
(fun m rec : nat => S (cPair (cPair 0 (m + m)) rec)) n.

Lemma codeNVars1IsPR : isPR 1 codeNVars1.
Proof.
unfold codeNVars1 in |- *.
apply indIsPR with (f := fun m rec : nat => S (cPair (cPair 0 (m + m)) rec)).
apply
compose2_1IsPR with (f := fun m rec : nat => cPair (cPair 0 (m + m)) rec).
apply
compose2_2IsPR
with
(f := fun m rec : nat => cPair 0 (m + m))
(g := fun m rec : nat => rec).
apply filter10IsPR with (g := fun m : nat => cPair 0 (m + m)).
apply
compose1_2IsPR with (f := fun m : nat => 0) (f' := fun m : nat => m + m).
apply const1_NIsPR.
apply compose1_2IsPR with (f := fun m : nat => m) (f' := fun m : nat => m).
apply idIsPR.
apply idIsPR.
apply plusIsPR.
apply cPairIsPR.
apply pi2_2IsPR.
apply cPairIsPR.
apply succIsPR.
Qed.

Definition codeNVars2 (n : nat) : nat :=
nat_rec (fun _ => nat) 0
(fun m rec : nat => S (cPair (cPair 0 (S (m + m))) rec)) n.

Lemma codeNVars2IsPR : isPR 1 codeNVars2.
Proof.
unfold codeNVars2 in |- *.
apply
indIsPR with (f := fun m rec : nat => S (cPair (cPair 0 (S (m + m))) rec)).
apply
compose2_1IsPR
with (f := fun m rec : nat => cPair (cPair 0 (S (m + m))) rec).
apply
compose2_2IsPR
with
(f := fun m rec : nat => cPair 0 (S (m + m)))
(g := fun m rec : nat => rec).
apply filter10IsPR with (g := fun m : nat => cPair 0 (S (m + m))).
apply
compose1_2IsPR with (f := fun m : nat => 0) (f' := fun m : nat => S (m + m)).
apply const1_NIsPR.
apply compose1_1IsPR with (f := fun m : nat => m + m).
apply compose1_2IsPR with (f := fun m : nat => m) (f' := fun m : nat => m).
apply idIsPR.
apply idIsPR.
apply plusIsPR.
apply succIsPR.
apply cPairIsPR.
apply pi2_2IsPR.
apply cPairIsPR.
apply succIsPR.
Qed.

Lemma codeNVarsCorrect :
forall n : nat,
codeNVars1 n = codeTerms L codeF n (fst (nVars L n)) /\
codeNVars2 n = codeTerms L codeF n (snd (nVars L n)).
Proof.
intros.
split.
induction n as [| n Hrecn].
simpl in |- *.
reflexivity.
simpl in |- *.
rewrite Hrecn.
induction (nVars L n).
simpl in |- *.
reflexivity.
induction n as [| n Hrecn].
simpl in |- *.
reflexivity.
simpl in |- *.
rewrite Hrecn.
induction (nVars L n).
simpl in |- *.
reflexivity.
Qed.

Definition checkPrfEQ4 (p recs : nat) :=
let r := cPairPi2 (cPairPi2 p) in
let A := cPair (S (S (S (S r)))) (codeNVars1 (pred (codeArityR r))) in
let B := cPair (S (S (S (S r)))) (codeNVars2 (pred (codeArityR r))) in
notZero (codeArityR r) *
charFunction 2 beq_nat (codeAxmEqHelp (pred (codeArityR r)) (codeIff A B))
(cPairPi1 p).

Lemma codeOrIsPR : isPR 2 codeOr.
Proof.
unfold codeOr in |- *.
apply
compose2_2IsPR
with (f := fun a b : nat => codeNot a) (g := fun a b : nat => b).
apply filter10IsPR.
apply codeNotIsPR.
apply pi2_2IsPR.
apply codeImpIsPR.
Qed.

Lemma codeAndIsPR : isPR 2 codeAnd.
Proof.
unfold codeAnd in |- *.
apply
compose2_1IsPR with (f := fun a b : nat => codeOr (codeNot a) (codeNot b)).
apply
compose2_2IsPR
with (f := fun a b : nat => codeNot a) (g := fun a b : nat => codeNot b).
apply filter10IsPR.
apply codeNotIsPR.
apply filter01IsPR.
apply codeNotIsPR.
apply codeOrIsPR.
apply codeNotIsPR.
Qed.

Lemma codeIffIsPR : isPR 2 codeIff.
Proof.
unfold codeIff in |- *.
apply compose2_2IsPR with (g := fun a b : nat => codeImp b a).
apply codeImpIsPR.
apply swapIsPR.
apply codeImpIsPR.
apply codeAndIsPR.
Qed.

Lemma checkPrfEQ4IsPR : isPR 2 checkPrfEQ4.
Proof.
unfold checkPrfEQ4 in |- *.
apply
filter10IsPR
with
(g := fun p : nat =>
notZero (codeArityR (cPairPi2 (cPairPi2 p))) *
charFunction 2 beq_nat
(codeAxmEqHelp (pred (codeArityR (cPairPi2 (cPairPi2 p))))
(codeIff
(cPair (S (S (S (S (cPairPi2 (cPairPi2 p))))))
(codeNVars1 (pred (codeArityR (cPairPi2 (cPairPi2 p))))))
(cPair (S (S (S (S (cPairPi2 (cPairPi2 p))))))
(codeNVars2 (pred (codeArityR (cPairPi2 (cPairPi2 p))))))))
(cPairPi1 p)).
assert (isPR 1 (fun p : nat => cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply
compose1_2IsPR
with
(f := fun p : nat => notZero (codeArityR (cPairPi2 (cPairPi2 p))))
(f' := fun p : nat =>
charFunction 2 beq_nat
(codeAxmEqHelp (pred (codeArityR (cPairPi2 (cPairPi2 p))))
(codeIff
(cPair (S (S (S (S (cPairPi2 (cPairPi2 p))))))
(codeNVars1 (pred (codeArityR (cPairPi2 (cPairPi2 p))))))
(cPair (S (S (S (S (cPairPi2 (cPairPi2 p))))))
(codeNVars2 (pred (codeArityR (cPairPi2 (cPairPi2 p))))))))
(cPairPi1 p)).
apply
compose1_1IsPR with (f := fun p : nat => codeArityR (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
assumption.
apply codeArityRIsPR.
apply notZeroIsPR.
apply
compose1_2IsPR
with
(f := fun p : nat =>
codeAxmEqHelp (pred (codeArityR (cPairPi2 (cPairPi2 p))))
(codeIff
(cPair (S (S (S (S (cPairPi2 (cPairPi2 p))))))
(codeNVars1 (pred (codeArityR (cPairPi2 (cPairPi2 p))))))
(cPair (S (S (S (S (cPairPi2 (cPairPi2 p))))))
(codeNVars2 (pred (codeArityR (cPairPi2 (cPairPi2 p)))))))).
apply
compose1_2IsPR
with
(f := fun p : nat => pred (codeArityR (cPairPi2 (cPairPi2 p))))
(f' := fun p : nat =>
codeIff
(cPair (S (S (S (S (cPairPi2 (cPairPi2 p))))))
(codeNVars1 (pred (codeArityR (cPairPi2 (cPairPi2 p))))))
(cPair (S (S (S (S (cPairPi2 (cPairPi2 p))))))
(codeNVars2 (pred (codeArityR (cPairPi2 (cPairPi2 p))))))).
apply
compose1_1IsPR with (f := fun p : nat => codeArityR (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
assumption.
apply codeArityRIsPR.
apply predIsPR.
apply
compose1_2IsPR
with
(f := fun p : nat =>
cPair (S (S (S (S (cPairPi2 (cPairPi2 p))))))
(codeNVars1 (pred (codeArityR (cPairPi2 (cPairPi2 p))))))
(f' := fun p : nat =>
cPair (S (S (S (S (cPairPi2 (cPairPi2 p))))))
(codeNVars2 (pred (codeArityR (cPairPi2 (cPairPi2 p)))))).
apply
compose1_2IsPR
with
(f := fun p : nat => S (S (S (S (cPairPi2 (cPairPi2 p))))))
(f' := fun p : nat =>
codeNVars1 (pred (codeArityR (cPairPi2 (cPairPi2 p))))).
apply
compose1_1IsPR
with (f := fun p : nat => cPairPi2 (cPairPi2 p)) (g := iterate S 4).
assumption.
apply iterateIsPR.
apply succIsPR.
apply
compose1_1IsPR
with (f := fun p : nat => pred (codeArityR (cPairPi2 (cPairPi2 p)))).
apply
compose1_1IsPR with (f := fun p : nat => codeArityR (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
assumption.
apply codeArityRIsPR.
apply predIsPR.
apply codeNVars1IsPR.
apply cPairIsPR.
apply
compose1_2IsPR
with
(f := fun p : nat => S (S (S (S (cPairPi2 (cPairPi2 p))))))
(f' := fun p : nat =>
codeNVars2 (pred (codeArityR (cPairPi2 (cPairPi2 p))))).
apply
compose1_1IsPR
with (f := fun p : nat => cPairPi2 (cPairPi2 p)) (g := iterate S 4).
assumption.
apply iterateIsPR.
apply succIsPR.
apply
compose1_1IsPR
with (f := fun p : nat => pred (codeArityR (cPairPi2 (cPairPi2 p)))).
apply
compose1_1IsPR with (f := fun p : nat => codeArityR (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
assumption.
apply codeArityRIsPR.
apply predIsPR.
apply codeNVars2IsPR.
apply cPairIsPR.
apply codeIffIsPR.
apply codeAxmEqHelpIsPR.
apply cPairPi1IsPR.
apply eqIsPR.
apply multIsPR.
Qed.

Definition checkPrfEQ5 (p recs : nat) :=
let f := cPairPi2 (cPairPi2 p) in
notZero (codeArityF f) *
charFunction 2 beq_nat
(codeAxmEqHelp (pred (codeArityF f))
(cPair 0
(cPair (cPair (S f) (codeNVars1 (pred (codeArityF f))))
(cPair (S f) (codeNVars2 (pred (codeArityF f)))))))
(cPairPi1 p).

Lemma checkPrfEQ5IsPR : isPR 2 checkPrfEQ5.
Proof.
unfold checkPrfEQ5 in |- *.
apply
filter10IsPR
with
(g := fun p : nat =>
notZero (codeArityF (cPairPi2 (cPairPi2 p))) *
charFunction 2 beq_nat
(codeAxmEqHelp (pred (codeArityF (cPairPi2 (cPairPi2 p))))
(cPair 0
(cPair
(cPair (S (cPairPi2 (cPairPi2 p)))
(codeNVars1
(pred (codeArityF (cPairPi2 (cPairPi2 p))))))
(cPair (S (cPairPi2 (cPairPi2 p)))
(codeNVars2
(pred (codeArityF (cPairPi2 (cPairPi2 p)))))))))
(cPairPi1 p)).
assert (isPR 1 (fun p : nat => cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR; apply cPairPi2IsPR.
apply
compose1_2IsPR
with
(f := fun p : nat => notZero (codeArityF (cPairPi2 (cPairPi2 p))))
(f' := fun p : nat =>
charFunction 2 beq_nat
(codeAxmEqHelp (pred (codeArityF (cPairPi2 (cPairPi2 p))))
(cPair 0
(cPair
(cPair (S (cPairPi2 (cPairPi2 p)))
(codeNVars1
(pred (codeArityF (cPairPi2 (cPairPi2 p))))))
(cPair (S (cPairPi2 (cPairPi2 p)))
(codeNVars2
(pred (codeArityF (cPairPi2 (cPairPi2 p)))))))))
(cPairPi1 p)).
apply
compose1_1IsPR with (f := fun p : nat => codeArityF (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
assumption.
apply codeArityFIsPR.
apply notZeroIsPR.
apply
compose1_2IsPR
with
(f := fun p : nat =>
codeAxmEqHelp (pred (codeArityF (cPairPi2 (cPairPi2 p))))
(cPair 0
(cPair
(cPair (S (cPairPi2 (cPairPi2 p)))
(codeNVars1 (pred (codeArityF (cPairPi2 (cPairPi2 p))))))
(cPair (S (cPairPi2 (cPairPi2 p)))
(codeNVars2 (pred (codeArityF (cPairPi2 (cPairPi2 p))))))))).
apply
compose1_2IsPR
with
(f := fun p : nat => pred (codeArityF (cPairPi2 (cPairPi2 p))))
(f' := fun p : nat =>
cPair 0
(cPair
(cPair (S (cPairPi2 (cPairPi2 p)))
(codeNVars1 (pred (codeArityF (cPairPi2 (cPairPi2 p))))))
(cPair (S (cPairPi2 (cPairPi2 p)))
(codeNVars2 (pred (codeArityF (cPairPi2 (cPairPi2 p)))))))).
apply
compose1_1IsPR with (f := fun p : nat => codeArityF (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
assumption.
apply codeArityFIsPR.
apply predIsPR.
apply
compose1_2IsPR
with
(f := fun p : nat =>
cPair (S (cPairPi2 (cPairPi2 p)))
(codeNVars1 (pred (codeArityF (cPairPi2 (cPairPi2 p))))))
(f' := fun p : nat =>
cPair (S (cPairPi2 (cPairPi2 p)))
(codeNVars2 (pred (codeArityF (cPairPi2 (cPairPi2 p))))))
(g := fun a b : nat => cPair 0 (cPair a b)).
apply
compose1_2IsPR
with
(f := fun p : nat => S (cPairPi2 (cPairPi2 p)))
(f' := fun p : nat =>
codeNVars1 (pred (codeArityF (cPairPi2 (cPairPi2 p))))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
assumption.
apply succIsPR.
apply
compose1_1IsPR
with (f := fun p : nat => pred (codeArityF (cPairPi2 (cPairPi2 p)))).
apply
compose1_1IsPR with (f := fun p : nat => codeArityF (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
assumption.
apply codeArityFIsPR.
apply predIsPR.
apply codeNVars1IsPR.
apply cPairIsPR.
apply
compose1_2IsPR
with
(f := fun p : nat => S (cPairPi2 (cPairPi2 p)))
(f' := fun p : nat =>
codeNVars2 (pred (codeArityF (cPairPi2 (cPairPi2 p))))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
assumption.
apply succIsPR.
apply
compose1_1IsPR
with (f := fun p : nat => pred (codeArityF (cPairPi2 (cPairPi2 p)))).
apply
compose1_1IsPR with (f := fun p : nat => codeArityF (cPairPi2 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi2 (cPairPi2 p)).
assumption.
apply codeArityFIsPR.
apply predIsPR.
apply codeNVars2IsPR.
apply cPairIsPR.
apply compose2_2IsPR with (f := fun a b : nat => 0).
apply filter10IsPR with (g := fun _ : nat => 0).
apply const1_NIsPR.
apply cPairIsPR.
apply cPairIsPR.
apply codeAxmEqHelpIsPR.
apply cPairPi1IsPR.
apply eqIsPR.
apply multIsPR.
Qed.

Definition checkPrfHelp : nat -> nat :=
evalStrongRec 0
(fun p recs : nat =>
let type := cPairPi1 (cPairPi2 p) in
switchPR type
(switchPR (pred type)
(switchPR (pred (pred type))
(switchPR (pred (pred (pred type)))
(switchPR (pred (pred (pred (pred type))))
(switchPR (pred (pred (pred (pred (pred type)))))
(switchPR
(pred (pred (pred (pred (pred (pred type))))))
(switchPR
(pred
(pred (pred (pred (pred (pred (pred type)))))))
(switchPR
(pred
(pred
(pred
(pred
(pred (pred (pred (pred type))))))))
(switchPR
(pred
(pred
(pred
(pred
(pred
(pred
(pred (pred (pred type)))))))))
(switchPR
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred (pred (pred type))))))))))
(switchPR
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred (pred (pred type)))))))))))
(switchPR
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred (pred (pred type))))))))))))
(switchPR
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred (pred (pred type)))))))))))))
0 (checkPrfEQ5 p recs))
(checkPrfEQ4 p recs))
(checkPrfEQ3 p recs))
(checkPrfEQ2 p recs))
(checkPrfEQ1 p recs))
(checkPrfFA3 p recs))
(checkPrfFA2 p recs)) (checkPrfFA1 p recs))
(checkPrfCP p recs)) (checkPrfIMP2 p recs))
(checkPrfIMP1 p recs)) (checkPrfGEN p recs))
(checkPrfMP p recs)) (checkPrfAXM p recs)).

Lemma checkPrfHelpIsPR : isPR 1 checkPrfHelp.
set
(f :=
list_rec (fun _ => nat -> nat -> nat -> nat) (fun _ _ _ : nat => 0)
(fun (a : nat -> nat -> nat) (l : list (nat -> nat -> nat))
(rec : nat -> nat -> nat -> nat) (n p recs : nat) =>
switchPR (iterate pred n (cPairPi1 (cPairPi2 p)))
(rec (S n) p recs) (a p recs))) in *.
set
(l :=
checkPrfAXM
:: checkPrfMP
:: checkPrfGEN
:: checkPrfIMP1
:: checkPrfIMP2
:: checkPrfCP
:: checkPrfFA1
:: checkPrfFA2
:: checkPrfFA3
:: checkPrfEQ1
:: checkPrfEQ2
:: checkPrfEQ3
:: checkPrfEQ4 :: checkPrfEQ5 :: nil)
in *.
assert
(forall (l : list (nat -> nat -> nat)) (n : nat),
list_rect (fun _ => Set) unit
(fun (a : nat -> nat -> nat) _ (rec : Set) => (isPR 2 a * rec)%type) l ->
isPR 2 (f l n)).
intro.
induction l0 as [| a l0 Hrecl0].
simpl in |- *.
intros.
apply filter10IsPR with (g := fun _ : nat => 0).
apply const1_NIsPR.
simpl in |- *.
intros.
apply
compose2_3IsPR
with (f1 := fun p recs : nat => iterate pred n (cPairPi1 (cPairPi2 p))).
apply
filter10IsPR
with (g := fun p : nat => iterate pred n (cPairPi1 (cPairPi2 p))).
apply compose1_1IsPR with (f := fun p : nat => cPairPi1 (cPairPi2 p)).
apply compose1_1IsPR.
apply cPairPi2IsPR.
apply cPairPi1IsPR.
apply iterateIsPR.
apply predIsPR.
apply Hrecl0.
eapply snd.
apply H.
eapply fst.
apply H.
apply switchIsPR.
assert (isPR 2 (f l 0)).
apply H.
simpl in |- *.
repeat split.
apply checkPrfAXMIsPR.
apply checkPrfMPIsPR.
apply checkPrfGENIsPR.
apply checkPrfIMP1IsPR.
apply checkPrfIMP2IsPR.
apply checkPrfCPIsPR.
apply checkPrfFA1IsPR.
apply checkPrfFA2IsPR.
apply checkPrfFA3IsPR.
apply checkPrfEQ1IsPR.
apply checkPrfEQ2IsPR.
apply checkPrfEQ3IsPR.
apply checkPrfEQ4IsPR.
apply checkPrfEQ5IsPR.
unfold checkPrfHelp in |- *.
apply evalStrongRecIsPR.
apply H0.
Qed.

Definition checkPrf (f p : nat) : nat :=
switchPR (wellFormedFormula f) (checkPrfHelp (cPair f p)) 0.

Lemma checkPrfIsPR : isPR 2 checkPrf.
Proof.
unfold checkPrf in |- *.
apply
compose2_3IsPR
with
(f1 := fun f p : nat => wellFormedFormula f)
(f2 := fun f p : nat => checkPrfHelp (cPair f p))
(f3 := fun f p : nat => 0).
apply filter10IsPR.
unfold wellFormedFormula in |- *.
apply wellFormedFormulaIsPR.
apply codeArityFIsPR.
apply codeArityRIsPR.
apply compose2_1IsPR.
apply cPairIsPR.
apply checkPrfHelpIsPR.
apply filter10IsPR with (g := fun _ : nat => 0).
apply const1_NIsPR.
apply switchIsPR.
Qed.

Lemma checkPrfCorrect1 :
forall (l : list Formula) (f : Formula) (p : Prf l f),
checkPrf (codeFormula L codeF codeR f) (codePrf L codeF codeR l f p) =
S (codeList (map (codeFormula L codeF codeR) l)).
Proof.
intros.
unfold checkPrf in |- *.
rewrite
(wellFormedFormulaCorrect1 L codeF codeArityF codeArityFIsCorrect1 codeR
codeArityR codeArityRIsCorrect1).
simpl in |- *.
lazy beta delta [checkPrfHelp] in |- *.
set
(A :=
fun p0 recs : nat =>
let type := cPairPi1 (cPairPi2 p0) in
switchPR type
(switchPR (pred type)
(switchPR (pred (pred type))
(switchPR (pred (pred (pred type)))
(switchPR (pred (pred (pred (pred type))))
(switchPR (pred (pred (pred (pred (pred type)))))
(switchPR (pred (pred (pred (pred (pred (pred type))))))
(switchPR
(pred (pred (pred (pred (pred (pred (pred type)))))))
(switchPR
(pred
(pred
(pred
(pred (pred (pred (pred (pred type))))))))
(switchPR
(pred
(pred
(pred
(pred
(pred
(pred (pred (pred (pred type)))))))))
(switchPR
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred (pred (pred type))))))))))
(switchPR
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred (pred (pred type)))))))))))
(switchPR
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred (pred (pred type))))))))))))
(switchPR
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred (pred (pred type)))))))))))))
0 (checkPrfEQ5 p0 recs))
(checkPrfEQ4 p0 recs))
(checkPrfEQ3 p0 recs))
(checkPrfEQ2 p0 recs))
(checkPrfEQ1 p0 recs))
(checkPrfFA3 p0 recs))
(checkPrfFA2 p0 recs)) (checkPrfFA1 p0 recs))
(checkPrfCP p0 recs)) (checkPrfIMP2 p0 recs))
(checkPrfIMP1 p0 recs)) (checkPrfGEN p0 recs))
(checkPrfMP p0 recs)) (checkPrfAXM p0 recs))
in *.
induction p
as
[A0|
Axm1 Axm2 A0 B p1 Hrecp1 p0 Hrecp0|
Axm A0 v n p Hrecp|
A0 B|
A0 B C|
A0 B|
A0 v t|
A0 v n|
A0 B v|
|
|
|
R|
f];
unfold evalStrongRec, evalComposeFunc, evalOneParamList, evalList in |- *;
rewrite computeEvalStrongRecHelp;
unfold compose2, evalComposeFunc, evalOneParamList, evalList in |- *;
simpl in |- *; rewrite cPairProjections1.
unfold A at 1 in |- *.
repeat first [ rewrite cPairProjections1 | rewrite cPairProjections2 ];
simpl in |- *.
unfold checkPrfAXM in |- *.
repeat first [ rewrite cPairProjections1 | rewrite cPairProjections2 ];
simpl in |- *.
rewrite <- beq_nat_refl.
reflexivity.
set
(C :=
cPair
(cPair
(cPair 1
(cPair (codeFormula L codeF codeR A0) (codeFormula L codeF codeR B)))
(codePrf L codeF codeR Axm1 (fol.impH L A0 B) p1))
(cPair (codeFormula L codeF codeR A0) (codePrf L codeF codeR Axm2 A0 p0)))
in *.
unfold A at 1 in |- *.
repeat first [ rewrite cPairProjections1 | rewrite cPairProjections2 ].
simpl in |- *.
unfold C at 1 in |- *.
unfold checkPrfMP in |- *.
repeat first [ rewrite cPairProjections1 | rewrite cPairProjections2 ].
simpl in |- *.
repeat rewrite evalStrongRecHelp1.
rewrite <- beq_nat_refl.
rewrite Hrecp0.
replace
(cPair 1
(cPair (codeFormula L codeF codeR A0) (codeFormula L codeF codeR B)))
with (codeFormula L codeF codeR (fol.impH L A0 B));
[ idtac | reflexivity ].
rewrite Hrecp1.
rewrite
(wellFormedFormulaCorrect1 L codeF codeArityF codeArityFIsCorrect1 codeR
codeArityR codeArityRIsCorrect1).
simpl in |- *.
replace (map (codeFormula L codeF codeR) (Axm1 ++ Axm2)) with
(map (codeFormula L codeF codeR) Axm1 ++
map (codeFormula L codeF codeR) Axm2).
rewrite codeAppCorrect.
reflexivity.
generalize (codeFormula L codeF codeR); intro.
clear p1 A Hrecp1 Hrecp0 C.
induction Axm1 as [| a Axm1 HrecAxm1].
reflexivity.
simpl in |- *.
rewrite HrecAxm1.
reflexivity.
eapply lt_le_trans; [ idtac | apply cPairLe2 ].
eapply le_lt_trans; [ idtac | apply cPairLt2 ].
unfold C in |- *.
apply cPairLe2.
eapply lt_le_trans; [ idtac | apply cPairLe2 ].
eapply le_lt_trans; [ idtac | apply cPairLt2 ].
unfold C in |- *.
apply cPairLe1.
unfold A at 1 in |- *.
repeat first [ rewrite cPairProjections1 | rewrite cPairProjections2 ].
simpl in |- *.
unfold checkPrfGEN in |- *.
repeat first [ rewrite cPairProjections1 | rewrite cPairProjections2 ].
repeat rewrite evalStrongRecHelp1.
rewrite Hrecp.
unfold pred in |- *.
rewrite codeFreeVarListFormulaCorrect.
rewrite codeInCorrect.
induction (In_dec eq_nat_dec v (freeVarListFormula L Axm)).
elim n.
assumption.
replace
(charFunction 2 beq_nat (cPair 3 (cPair v (codeFormula L codeF codeR A0)))
(cPair 3 (cPair v (codeFormula L codeF codeR A0)))) with 1.
simpl in |- *.
reflexivity.
simpl in |- *.
rewrite <- beq_nat_refl.
reflexivity.
eapply lt_le_trans; [ idtac | apply cPairLe2 ].
eapply le_lt_trans; [ idtac | apply cPairLt2 ].
apply cPairLe2.
unfold A at 1 in |- *.
repeat first [ rewrite cPairProjections1 | rewrite cPairProjections2 ].
simpl in |- *.
unfold checkPrfIMP1 in |- *.
repeat first [ rewrite cPairProjections1 | rewrite cPairProjections2 ].
unfold charFunction in |- *.
rewrite <- beq_nat_refl.
reflexivity.
unfold A at 1 in |- *.
repeat first [ rewrite cPairProjections1 | rewrite cPairProjections2 ].
simpl in |- *.
unfold checkPrfIMP2 in |- *.
repeat first [ rewrite cPairProjections1 | rewrite cPairProjections2 ].
unfold charFunction in |- *.
rewrite <- beq_nat_refl.
reflexivity.
unfold A at 1 in |- *.
repeat first [ rewrite cPairProjections1 | rewrite cPairProjections2 ].
simpl in |- *.
unfold checkPrfCP in |- *.
repeat first [ rewrite cPairProjections1 | rewrite cPairProjections2 ].
unfold charFunction in |- *.
rewrite <- beq_nat_refl.
reflexivity.
unfold A at 1 in |- *.
repeat first [ rewrite cPairProjections1 | rewrite cPairProjections2 ].
simpl in |- *.
unfold checkPrfFA1 in |- *.
repeat first [ rewrite cPairProjections1 | rewrite cPairProjections2 ].
rewrite codeSubFormulaCorrect.
unfold charFunction in |- *.
rewrite <- beq_nat_refl.
rewrite (wellFormedTermCorrect1 L codeF codeArityF codeArityFIsCorrect1).
reflexivity.
unfold A at 1 in |- *.
repeat first [ rewrite cPairProjections1 | rewrite cPairProjections2 ].
simpl in |- *.
unfold checkPrfFA2 in |- *.
repeat first [ rewrite cPairProjections1 | rewrite cPairProjections2 ].
rewrite codeFreeVarFormulaCorrect.
rewrite codeInCorrect.
induction (In_dec eq_nat_dec v (freeVarFormula L A0)).
elim n.
assumption.
unfold charFunction in |- *.
rewrite <- beq_nat_refl.
reflexivity.
unfold A at 1 in |- *.
repeat first [ rewrite cPairProjections1 | rewrite cPairProjections2 ].
simpl in |- *.
unfold checkPrfFA3 in |- *.
repeat first [ rewrite cPairProjections1 | rewrite cPairProjections2 ].
unfold charFunction in |- *.
rewrite <- beq_nat_refl.
reflexivity.
set
(C :=
cPair 0
(cPair (codeTerm L codeF (fol.var L 0)) (codeTerm L codeF (fol.var L 0))))
in *.
unfold A at 1 in |- *.
cut (cPairPi1 (cPairPi2 (cPair C (cPair 9 0))) = 9);
[ intro H; rewrite H; clear H | idtac ].
simpl in |- *.
unfold checkPrfEQ1 in |- *.
rewrite (cPairProjections2 C (cPair 9 0)).
rewrite (cPairProjections1 C (cPair 9 0)).
rewrite (cPairProjections2 9 0).
unfold C in |- *.
unfold charFunction in |- *.
rewrite <- beq_nat_refl.
simpl in |- *.
reflexivity.
rewrite (cPairProjections2 C (cPair 9 0)).
rewrite (cPairProjections1 9 0).
reflexivity.
set
(C :=
cPair 1
(cPair
(cPair 0
(cPair (codeTerm L codeF (fol.var L 0))
(codeTerm L codeF (fol.var L 1))))
(cPair 0
(cPair (codeTerm L codeF (fol.var L 1))
(codeTerm L codeF (fol.var L 0)))))) in *.
unfold A at 1 in |- *.
cut (cPairPi1 (cPairPi2 (cPair C (cPair 10 0))) = 10).
generalize (cPairPi1 (cPairPi2 (cPair C (cPair 10 0)))).
intros.
rewrite H.
simpl in |- *.
unfold checkPrfEQ2 in |- *.
replace
(codeFormula L codeF codeR
(fol.impH L (fol.equal L (fol.var L 0) (fol.var L 1))
(fol.equal L (fol.var L 1) (fol.var L 0)))) with C;
[ idtac | reflexivity ].
generalize C; intros.
rewrite (cPairProjections2 C0 (cPair 10 0)).
rewrite (cPairProjections2 10 0).
rewrite (cPairProjections1 C0 (cPair 10 0)).
unfold charFunction in |- *.
repeat rewrite <- beq_nat_refl.
reflexivity.
rewrite (cPairProjections2 C (cPair 10 0)).
rewrite (cPairProjections1 10 0).
reflexivity.
set
(C :=
cPair 1
(cPair
(cPair 0
(cPair (codeTerm L codeF (fol.var L 0))
(codeTerm L codeF (fol.var L 1))))
(cPair 1
(cPair
(cPair 0
(cPair (codeTerm L codeF (fol.var L 1))
(codeTerm L codeF (fol.var L 2))))
(cPair 0
(cPair (codeTerm L codeF (fol.var L 0))
(codeTerm L codeF (fol.var L 2))))))))
in *.
unfold A at 1 in |- *.
cut (cPairPi1 (cPairPi2 (cPair C (cPair 11 0))) = 11).
generalize (cPairPi1 (cPairPi2 (cPair C (cPair 11 0)))).
intros.
rewrite H.
simpl in |- *.
unfold checkPrfEQ3 in |- *.
replace
(codeFormula L codeF codeR
(fol.impH L (fol.equal L (fol.var L 0) (fol.var L 1))
(fol.impH L (fol.equal L (fol.var L 1) (fol.var L 2))
(fol.equal L (fol.var L 0) (fol.var L 2))))) with C;
[ idtac | reflexivity ].
generalize C; intros.
rewrite (cPairProjections2 C0 (cPair 11 0)).
rewrite (cPairProjections1 C0 (cPair 11 0)).
rewrite (cPairProjections2 11 0).
unfold charFunction in |- *.
repeat rewrite <- beq_nat_refl.
reflexivity.
rewrite (cPairProjections2 C (cPair 11 0)).
rewrite (cPairProjections1 11 0).
reflexivity.
unfold A at 1 in |- *.
repeat first [ rewrite cPairProjections1 | rewrite cPairProjections2 ].
simpl in |- *.
unfold checkPrfEQ4 in |- *.
repeat first [ rewrite cPairProjections1 | rewrite cPairProjections2 ].
rewrite codeArityRIsCorrect1.
replace
(codeAxmEqHelp (pred (S (arity L (inl (Functions L) R))))
(codeIff
(cPair (S (S (S (S (codeR R)))))
(codeNVars1 (pred (S (arity L (inl (Functions L) R))))))
(cPair (S (S (S (S (codeR R)))))
(codeNVars2 (pred (S (arity L (inl (Functions L) R)))))))) with
(codeFormula L codeF codeR (AxmEq4 L R)).
unfold charFunction in |- *.
repeat rewrite <- beq_nat_refl.
reflexivity.
unfold AxmEq4 in |- *.
clear A.
simpl in |- *.
induction (codeNVarsCorrect (arity L (inl (Functions L) R))).
rewrite H.
rewrite H0.
clear H H0.
induction (nVars L (arity L (inl (Functions L) R))).
simpl in |- *.
replace
(codeIff
(cPair (S (S (S (S (codeR R)))))
(codeTerms L codeF (arity L (inl (Functions L) R)) a))
(cPair (S (S (S (S (codeR R)))))
(codeTerms L codeF (arity L (inl (Functions L) R)) b))) with
(codeFormula L codeF codeR (iffH L (fol.atomic L R a) (fol.atomic L R b))).
generalize (arity L (inl (Functions L) R)).
intros.
induction n as [| n Hrecn].
reflexivity.
simpl in |- *.
rewrite Hrecn.
reflexivity.
rewrite <- codeIffCorrect.
reflexivity.
unfold A at 1 in |- *.
repeat first [ rewrite cPairProjections1 | rewrite cPairProjections2 ].
simpl in |- *.
unfold checkPrfEQ5 in |- *.
repeat first [ rewrite cPairProjections1 | rewrite cPairProjections2 ].
rewrite codeArityFIsCorrect1.
replace
(codeAxmEqHelp (pred (S (arity L (inr (Relations L) f))))
(cPair 0
(cPair
(cPair (S (codeF f))
(codeNVars1 (pred (S (arity L (inr (Relations L) f))))))
(cPair (S (codeF f))
(codeNVars2 (pred (S (arity L (inr (Relations L) f))))))))) with
(codeFormula L codeF codeR (AxmEq5 L f)).
unfold charFunction in |- *.
repeat rewrite <- beq_nat_refl.
reflexivity.
unfold AxmEq5 in |- *.
clear A.
simpl in |- *.
induction (codeNVarsCorrect (arity L (inr (Relations L) f))).
rewrite H.
rewrite H0.
clear H H0.
induction (nVars L (arity L (inr (Relations L) f))).
simpl in |- *.
replace
(cPair 0
(cPair
(cPair (S (codeF f))
(codeTerms L codeF (arity L (inr (Relations L) f)) a))
(cPair (S (codeF f))
(codeTerms L codeF (arity L (inr (Relations L) f)) b)))) with
(codeFormula L codeF codeR (fol.equal L (fol.apply L f a) (fol.apply L f b))).
generalize (arity L (inr (Relations L) f)).
intros.
induction n as [| n Hrecn].
reflexivity.
simpl in |- *.
rewrite Hrecn.
reflexivity.
reflexivity.
Qed.

Lemma checkPrfCorrect2 :
forall n m : nat,
checkPrf n m <> 0 ->
exists f : Formula,
codeFormula L codeF codeR f = n /\
(exists l : list Formula,
(exists p : Prf l f, codePrf L codeF codeR l f p = m)).
Proof.
assert (multLemma1 : forall a b : nat, a * b <> 0 -> a <> 0).
unfold not in |- *; intros.
apply H.
rewrite H0.
simpl in |- *.
reflexivity.
assert (multLemma2 : forall a b : nat, a * b <> 0 -> b <> 0).
intros.
rewrite mult_comm in H.
eapply multLemma1.
apply H.
assert
(forall m n : nat,
n < m ->
checkPrf (cPairPi1 n) (cPairPi2 n) <> 0 ->
exists f : Formula,
(exists l : list Formula,
(exists p : Prf l f,
cPair (codeFormula L codeF codeR f) (codePrf L codeF codeR l f p) =
n))).
intro.
induction m as [| m Hrecm].
intros.
elim (lt_n_O _ H).
intros.
induction (le_lt_or_eq _ _ (lt_n_Sm_le _ _ H)).
apply Hrecm; assumption.
unfold checkPrf in H0.
assert (wellFormedFormula (cPairPi1 n) <> 0).
destruct (wellFormedFormula (cPairPi1 n)).
assumption.
discriminate.
induction
(wellFormedFormulaCorrect2 L codeF codeArityF codeArityFIsCorrect1
codeArityFIsCorrect2 codeR codeArityR codeArityRIsCorrect1
codeArityRIsCorrect2 _ H2).
exists x.
destruct (wellFormedFormula (cPairPi1 n)).
elim H2.
auto.
simpl in H0.
clear H2.
unfold checkPrfHelp in H0.
set
(A :=
fun p recs : nat =>
switchPR (cPairPi1 (cPairPi2 p))
(switchPR (pred (cPairPi1 (cPairPi2 p)))
(switchPR (pred (pred (cPairPi1 (cPairPi2 p))))
(switchPR (pred (pred (pred (cPairPi1 (cPairPi2 p)))))
(switchPR (pred (pred (pred (pred (cPairPi1 (cPairPi2 p))))))
(switchPR
(pred (pred (pred (pred (pred (cPairPi1 (cPairPi2 p)))))))
(switchPR
(pred
(pred
(pred
(pred (pred (pred (cPairPi1 (cPairPi2 p))))))))
(switchPR
(pred
(pred
(pred
(pred
(pred
(pred (pred (cPairPi1 (cPairPi2 p)))))))))
(switchPR
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(cPairPi1 (cPairPi2 p))))))))))
(switchPR
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(cPairPi1 (cPairPi2 p)))))))))))
(switchPR
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(cPairPi1 (cPairPi2 p))))))))))))
(switchPR
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(cPairPi1 (cPairPi2 p)))))))))))))
(switchPR
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(cPairPi1 (cPairPi2 p))))))))))))))
(switchPR
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(pred
(cPairPi1 (cPairPi2 p)))))))))))))))
0 (checkPrfEQ5 p recs))
(checkPrfEQ4 p recs))
(checkPrfEQ3 p recs))
(checkPrfEQ2 p recs))
(checkPrfEQ1 p recs))
(checkPrfFA3 p recs)) (checkPrfFA2 p recs))
(checkPrfFA1 p recs)) (checkPrfCP p recs))
(checkPrfIMP2 p recs)) (checkPrfIMP1 p recs))
(checkPrfGEN p recs)) (checkPrfMP p recs))
(checkPrfAXM p recs)) in *.
unfold evalStrongRec, evalComposeFunc, evalOneParamList, evalList in H0;
rewrite computeEvalStrongRecHelp in H0;
unfold compose2, evalComposeFunc, evalOneParamList, evalList in H0;
simpl in H0.
rewrite cPairProjections1 in H0.
assert (cPair (cPairPi1 (cPairPi2 n)) (cPairPi2 (cPairPi2 n)) = cPairPi2 n).
apply cPairProjections.
unfold A at 1 in H0.
repeat first
[ rewrite cPairProjections1 in H0 | rewrite cPairProjections2 in H0 ].
destruct (cPairPi1 (cPairPi2 n)).
simpl in H0.
unfold checkPrfAXM in H0.
repeat first
[ rewrite cPairProjections1 in H0 | rewrite cPairProjections2 in H0 ].
rewrite <- H3 in H0.
induction (eq_nat_dec (cPairPi2 (cPairPi2 n)) (codeFormula L codeF codeR x)).
exists (x :: nil).
exists (AXM L x).
rewrite H3.
simpl in |- *.
rewrite a in H2.
rewrite H2.
apply cPairProjections.
elim H0.
unfold charFunction in |- *.
rewrite beq_nat_not_refl.
reflexivity.
assumption.
destruct n1.
simpl in H0.
unfold checkPrfMP in H0.
repeat first
[ rewrite cPairProjections1 in H0 | rewrite cPairProjections2 in H0 ].
assert (cPairPi2 (cPairPi2 n) < n).
apply lt_le_trans with (cPair 1 (cPairPi2 (cPairPi2 n)));
[ idtac | rewrite H2; apply cPairLe2A ].
apply cPairLt2.
assert (cPairPi1 (cPairPi2 (cPairPi2 n)) < n).
apply le_lt_trans with (cPairPi2 (cPairPi2 n)).
apply cPairLe1A.
assumption.
assert (cPairPi2 (cPairPi2 (cPairPi2 n)) < n).
apply le_lt_trans with (cPairPi2 (cPairPi2 n)).
apply cPairLe2A.
assumption.
rewrite evalStrongRecHelp1 in H0.
rewrite evalStrongRecHelp1 in H0.
assert (wellFormedFormula (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 n)))) <> 0).
unfold not in |- *; intros.
apply H0.
rewrite H7.
reflexivity.
induction
(eq_nat_dec (cPairPi1 (cPairPi1 (cPairPi2 (cPairPi2 n))))
(codeImp (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 n)))) (cPairPi1 n))).
induction
(wellFormedFormulaCorrect2 L codeF codeArityF codeArityFIsCorrect1
codeArityFIsCorrect2 codeR codeArityR codeArityRIsCorrect1
codeArityRIsCorrect2 _ H7).
assert
(checkPrf (cPairPi1 (cPairPi1 (cPairPi2 (cPairPi2 n))))
(cPairPi2 (cPairPi1 (cPairPi2 (cPairPi2 n)))) <> 0).
unfold checkPrf in |- *.
rewrite a.
rewrite <- H3.
rewrite <- H8.
rewrite codeImpCorrect.
rewrite
(wellFormedFormulaCorrect1 L codeF codeArityF codeArityFIsCorrect1 codeR
codeArityR codeArityRIsCorrect1).
simpl in |- *.
unfold checkPrfHelp in |- *.
fold A in |- *.
rewrite H8.
rewrite H3.
replace
(cPair 1 (cPair (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 n)))) (cPairPi1 n)))
with (cPairPi1 (cPairPi1 (cPairPi2 (cPairPi2 n)))).
rewrite cPairProjections.
destruct (evalStrongRec 0 A (cPairPi1 (cPairPi2 (cPairPi2 n)))).
rewrite mult_comm in H0.
rewrite
(mult_comm
(charFunction 2 beq_nat (cPairPi1 (cPairPi1 (cPairPi2 (cPairPi2 n))))
(codeImp (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 n)))) (cPairPi1 n))))
in H0.
simpl in H0.
assumption.
discriminate.
assert
(checkPrf (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 n))))
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 n)))) <> 0).
unfold checkPrf in |- *.
rewrite <- H8.
rewrite
(wellFormedFormulaCorrect1 L codeF codeArityF codeArityFIsCorrect1 codeR
codeArityR codeArityRIsCorrect1).
simpl in |- *.
unfold checkPrfHelp in |- *.
fold A in |- *.
rewrite H8.
rewrite cPairProjections.
destruct (evalStrongRec 0 A (cPairPi2 (cPairPi2 (cPairPi2 n)))).
rewrite mult_comm in H0.
rewrite
(mult_comm
(charFunction 2 beq_nat (cPairPi1 (cPairPi1 (cPairPi2 (cPairPi2 n))))
(codeImp (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 n)))) (cPairPi1 n))))
in H0.
rewrite (mult_comm (evalStrongRec 0 A (cPairPi1 (cPairPi2 (cPairPi2 n)))))
in H0.
simpl in H0.
assumption.
discriminate.
assert (cPairPi1 (cPairPi2 (cPairPi2 n)) < m).
apply lt_le_trans with n.
assumption.
rewrite H1.
apply le_n.
assert (cPairPi2 (cPairPi2 (cPairPi2 n)) < m).
apply lt_le_trans with n.
assumption.
rewrite H1.
apply le_n.
induction (Hrecm _ H11 H9).
induction (Hrecm _ H12 H10).
induction H13 as (x3, H13).
induction H13 as (x4, H13).
induction H14 as (x5, H14).
induction H14 as (x6, H14).
exists (x3 ++ x5).
rewrite <- H13 in a.
rewrite <- H14 in a.
repeat rewrite cPairProjections1 in a.
rewrite <- H3 in a.
rewrite codeImpCorrect in a.
assert (x1 = impH x2 x).
apply (codeFormulaInj L codeF codeR codeFInj codeRInj).
assumption.
intros.
cut
(cPair (codeFormula L codeF codeR x1) (codePrf L codeF codeR x3 x1 x4) =
cPairPi1 (cPairPi2 (cPairPi2 n))).
generalize x4.
clear H13 x4.
rewrite H15.
intros.
exists (MP L x3 x5 x2 x x4 x6).
rewrite <- (cPairProjections n).
rewrite H3.
simpl in |- *.
rewrite <- H2.
replace
(cPair 1
(cPair (codeFormula L codeF codeR x2) (codeFormula L codeF codeR x)))
with (codeFormula L codeF codeR x1).
rewrite H14.
fold impH in |- *.
rewrite H15.
rewrite H13.
rewrite cPairProjections.
reflexivity.
assumption.
unfold charFunction in H0.
rewrite beq_nat_not_refl in H0.
rewrite mult_comm in H0.
simpl in H0.
elim H0.
reflexivity.
assumption.
rewrite cPairProjections.
assumption.
rewrite cPairProjections.
assumption.
destruct n1.
simpl in H0.
unfold checkPrfGEN in H0.
repeat first
[ rewrite cPairProjections1 in H0 | rewrite cPairProjections2 in H0 ].
assert (cPairPi2 (cPairPi2 (cPairPi2 n)) < n).
eapply le_lt_trans.
apply cPairLe2A.
apply lt_le_trans with (cPair 2 (cPairPi2 (cPairPi2 n)));
[ idtac | rewrite H2; apply cPairLe2A ].
apply cPairLt2.
rewrite evalStrongRecHelp1 in H0.
induction
(eq_nat_dec
(cPair 3
(cPair (cPairPi1 (cPairPi2 (cPairPi2 n)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 n))))))
(cPairPi1 n)).
rewrite <- a in H3.
destruct x as [t t0| r t| f f0| f| n1 f]; simpl in H3;
try
match goal with
| H:(cPair ?X1 _ = cPair ?X2 _) |- _ =>
cut (X1 = X2); [ intro I; discriminate I | eapply cPairInj1; apply H ]
end.
assert (n1 = cPairPi1 (cPairPi2 (cPairPi2 n))).
eapply cPairInj1.
eapply cPairInj2.
apply H3.
assert
(codeFormula L codeF codeR f = cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 n)))).
eapply cPairInj2.
eapply cPairInj2.
apply H3.
assert
(checkPrf (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 n))))
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 n)))) <> 0).
unfold checkPrf in |- *.
rewrite <- H6.
rewrite
(wellFormedFormulaCorrect1 L codeF codeArityF codeArityFIsCorrect1 codeR
codeArityR codeArityRIsCorrect1).
simpl in |- *.
unfold checkPrfHelp in |- *.
fold A in |- *.
rewrite H6.
rewrite cPairProjections.
destruct (evalStrongRec 0 A (cPairPi2 (cPairPi2 (cPairPi2 n)))).
rewrite mult_comm in H0.
simpl in H0.
assumption.
discriminate.
assert (cPairPi2 (cPairPi2 (cPairPi2 n)) < m).
apply lt_le_trans with n.
assumption.
rewrite H1.
apply le_n.
induction (Hrecm _ H8 H7).
induction H9 as (x0, H9).
induction H9 as (x1, H9).
exists x0.
rewrite <- H5 in H0.
rewrite <- H9 in H0.
assert
(checkPrf (codeFormula L codeF codeR x) (codePrf L codeF codeR x0 x x1) =
S (codeList (map (codeFormula L codeF codeR) x0))).
apply checkPrfCorrect1.
unfold checkPrf in H10.
rewrite
(wellFormedFormulaCorrect1 L codeF codeArityF codeArityFIsCorrect1 codeR
codeArityR codeArityRIsCorrect1) in H10.
simpl in H10.
unfold checkPrfHelp in H10.
fold A in H10.
rewrite H10 in H0.
unfold pred in H0.
rewrite codeFreeVarListFormulaCorrect in H0.
rewrite codeInCorrect in H0.
induction (In_dec eq_nat_dec n1 (freeVarListFormula L x0)).
rewrite (mult_comm (S (codeList (map (codeFormula L codeF codeR) x0)))) in H0.
rewrite mult_comm in H0.
simpl in H0.
elim H0; reflexivity.
rewrite <- H9 in H6.
rewrite cPairProjections1 in H6.
cut
(cPair (codeFormula L codeF codeR x) (codePrf L codeF codeR x0 x x1) =
cPairPi2 (cPairPi2 (cPairPi2 n))).
generalize x1.
clear H10 H0 x1 H9.
replace x with f.
intros.
exists (GEN L x0 f n1 b x1).
simpl in |- *.
rewrite H3.
rewrite a.
rewrite H0.
rewrite H5.
rewrite cPairProjections.
rewrite H2.
apply cPairProjections.
apply (codeFormulaInj L codeF codeR codeFInj codeRInj).
assumption.
assumption.
unfold charFunction in H0.
rewrite beq_nat_not_refl in H0.
elim H0.
simpl in |- *.
reflexivity.
assumption.
rewrite cPairProjections.
assumption.
destruct n1.
simpl in H0.
unfold checkPrfIMP1 in H0.
repeat first
[ rewrite cPairProjections1 in H0 | rewrite cPairProjections2 in H0 ].
exists (nil (A:=Formula)).
rewrite <- H3 in H0.
induction
(eq_nat_dec
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 n)))
(cPair 1
(cPair (cPairPi2 (cPairPi2 (cPairPi2 n)))
(cPairPi1 (cPairPi2 (cPairPi2 n)))))))
(codeFormula L codeF codeR x)).
destruct x as [t t0| r t| f f0| f| n1 f]; simpl in a;
try
match goal with
| H:(cPair ?X1 _ = cPair ?X2 _) |- _ =>
cut (X1 = X2); [ intro I; discriminate I | eapply cPairInj1; apply H ]
end.
assert (cPairPi1 (cPairPi2 (cPairPi2 n)) = codeFormula L codeF codeR f).
eapply cPairInj1.
eapply cPairInj2.
apply a.
assert
(cPair 1
(cPair (cPairPi2 (cPairPi2 (cPairPi2 n)))
(cPairPi1 (cPairPi2 (cPairPi2 n)))) = codeFormula L codeF codeR f0).
eapply cPairInj2.
eapply cPairInj2.
apply a.
clear a.
destruct f0 as [t t0| r t| f0 f1| f0| n1 f0]; simpl in H5;
try
match goal with
| H:(cPair ?X1 _ = cPair ?X2 _) |- _ =>
cut (X1 = X2); [ intro I; discriminate I | eapply cPairInj1; apply H ]
end.
assert (cPairPi2 (cPairPi2 (cPairPi2 n)) = codeFormula L codeF codeR f0).
eapply cPairInj1.
eapply cPairInj2.
apply H5.
assert (cPairPi1 (cPairPi2 (cPairPi2 n)) = codeFormula L codeF codeR f1).
eapply cPairInj2.
eapply cPairInj2.
apply H5.
assert (f1 = f).
apply (codeFormulaInj L codeF codeR codeFInj codeRInj).
transitivity (cPairPi1 (cPairPi2 (cPairPi2 n))).
symmetry in |- *.
assumption.
assumption.
rewrite H8.
rewrite H8 in H3.
exists (IMP1 L f f0).
rewrite H3.
simpl in |- *.
rewrite <- H4.
rewrite <- H6.
rewrite cPairProjections.
rewrite H2.
apply cPairProjections.
elim H0.
unfold charFunction in |- *.
rewrite beq_nat_not_refl.
reflexivity.
assumption.
destruct n1.
simpl in H0.
unfold checkPrfIMP2 in H0.
repeat first
[ rewrite cPairProjections1 in H0 | rewrite cPairProjections2 in H0 ].
exists (nil (A:=Formula)).
clear A.
rewrite <- H3 in H0.
rename x into f.
induction
(eq_nat_dec
(cPair 1
(cPair
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 n)))
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 n))))
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 n))))))))
(cPair 1
(cPair
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 n)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 n))))))
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 n)))
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 n))))))))))
(codeFormula L codeF codeR f)).
repeat
match goal with
| H:(cPair ?X1 (cPair ?X2 ?X3) = cPair ?X1 (cPair ?X4 ?X5)) |- _ =>
assert (X2 = X4);
[ eapply cPairInj1; eapply cPairInj2; apply H
| assert (X3 = X5);
[ eapply cPairInj2; eapply cPairInj2; apply H | clear H ] ]
| H:(cPair ?X1 (cPair _ _) = codeFormula L codeF codeR ?X2) |- _ =>
destruct X2;
simpl in H;
try
match goal with
| J:(cPair ?X1 _ = cPair ?X2 _) |- _ =>
cut (X1 = X2);
[ intro I; discriminate I | eapply cPairInj1; apply J ]
end
end.
rewrite H3.
replace f2_2_1 with f1_1.
replace f1_2_2 with f2_2_2.
replace f1_2_1 with f2_1_2.
replace f2_1_1 with f1_1.
exists (IMP2 L f1_1 f2_1_2 f2_2_2).
simpl in |- *.
rewrite <- H9.
rewrite <- H8.
rewrite cPairProjections.
rewrite <- H6.
rewrite cPairProjections.
rewrite H2.
apply cPairProjections.
apply (codeFormulaInj L codeF codeR codeFInj codeRInj).
transitivity (cPairPi1 (cPairPi2 (cPairPi2 n)));
[ symmetry in |- *; assumption | assumption ].
apply (codeFormulaInj L codeF codeR codeFInj codeRInj).
transitivity (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 n))));
[ symmetry in |- *; assumption | assumption ].
apply (codeFormulaInj L codeF codeR codeFInj codeRInj).
transitivity (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 n))));
[ symmetry in |- *; assumption | assumption ].
apply (codeFormulaInj L codeF codeR codeFInj codeRInj).
transitivity (cPairPi1 (cPairPi2 (cPairPi2 n)));
[ symmetry in |- *; assumption | assumption ].
elim H0.
unfold charFunction in |- *.
rewrite beq_nat_not_refl.
reflexivity.
assumption.
destruct n1.
simpl in H0.
unfold checkPrfCP in H0.
clear A.
repeat first
[ rewrite cPairProjections1 in H0 | rewrite cPairProjections2 in H0 ].
exists (nil (A:=Formula)).
rewrite <- H3 in H0.
rename x into f.
induction
(eq_nat_dec
(cPair 1
(cPair
(cPair 1
(cPair (cPair 2 (cPairPi1 (cPairPi2 (cPairPi2 n))))
(cPair 2 (cPairPi2 (cPairPi2 (cPairPi2 n))))))
(cPair 1
(cPair (cPairPi2 (cPairPi2 (cPairPi2 n)))
(cPairPi1 (cPairPi2 (cPairPi2 n)))))))
(codeFormula L codeF codeR f)).
repeat
match goal with
| H:(cPair 1 (cPair ?X2 ?X3) = cPair 1 (cPair ?X4 ?X5)) |- _ =>
assert (X2 = X4);
[ eapply cPairInj1; eapply cPairInj2; apply H
| assert (X3 = X5);
[ eapply cPairInj2; eapply cPairInj2; apply H | clear H ] ]
| H:(cPair 2 ?X2 = cPair 2 ?X4) |- _ =>
assert (X2 = X4); [ eapply cPairInj2; apply H | clear H ]
| H:(cPair ?X1 _ = codeFormula L codeF codeR ?X2) |- _ =>
destruct X2;
simpl in H;
try
match goal with
| J:(cPair ?X1 _ = cPair ?X2 _) |- _ =>
cut (X1 = X2);
[ intro I; discriminate I | eapply cPairInj1; apply J ]
end
end.
rewrite H3.
replace f2_2 with f1_1.
replace f1_2 with f2_1.
exists (CP L f1_1 f2_1).
simpl in |- *.
rewrite <- H8.
rewrite <- H6.
rewrite cPairProjections.
rewrite H2.
apply cPairProjections.
apply (codeFormulaInj L codeF codeR codeFInj codeRInj).
transitivity (cPairPi2 (cPairPi2 (cPairPi2 n)));
[ symmetry in |- *; assumption | assumption ].
apply (codeFormulaInj L codeF codeR codeFInj codeRInj).
transitivity (cPairPi1 (cPairPi2 (cPairPi2 n)));
[ symmetry in |- *; assumption | assumption ].
elim H0.
unfold charFunction in |- *.
rewrite beq_nat_not_refl.
reflexivity.
assumption.
destruct n1.
simpl in H0.
unfold checkPrfFA1 in H0.
clear A.
repeat first
[ rewrite cPairProjections1 in H0 | rewrite cPairProjections2 in H0 ].
exists (nil (A:=Formula)).
rewrite <- H3 in H0.
rename x into f.
induction
(eq_nat_dec
(cPair 1
(cPair
(cPair 3
(cPair (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 n))))
(cPairPi1 (cPairPi2 (cPairPi2 n)))))
(codeSubFormula (cPairPi1 (cPairPi2 (cPairPi2 n)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 n))))
(cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 n)))))))
(codeFormula L codeF codeR f)).
repeat
match goal with
| H:(cPair 1 (cPair ?X2 ?X3) = cPair 1 (cPair ?X4 ?X5)) |- _ =>
assert (X2 = X4);
[ eapply cPairInj1; eapply cPairInj2; apply H
| assert (X3 = X5);
[ eapply cPairInj2; eapply cPairInj2; apply H | clear H ] ]
| H:(cPair 3 (cPair ?X2 ?X3) = cPair 3 (cPair ?X4 ?X5)) |- _ =>
assert (X2 = X4);
[ eapply cPairInj1; eapply cPairInj2; apply H
| assert (X3 = X5);
[ eapply cPairInj2; eapply cPairInj2; apply H | clear H ] ]
| H:(cPair ?X1 _ = codeFormula L codeF codeR ?X2) |- _ =>
destruct X2;
simpl in H;
try
match goal with
| J:(cPair ?X1 _ = cPair ?X2 _) |- _ =>
cut (X1 = X2);
[ intro I; discriminate I | eapply cPairInj1; apply J ]
end
end.
rewrite H3.
rewrite H6 in H5.
rewrite H7 in H5.
assert (wellFormedTerm (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 n)))) <> 0).
eapply multLemma1.
apply H0.
induction
(wellFormedTermCorrect2 L codeF codeArityF codeArityFIsCorrect1
codeArityFIsCorrect2 _ H4).
rewrite <- H8 in H5.
rewrite codeSubFormulaCorrect in H5.
replace f2 with (substituteFormula L f1 n1 x).
exists (FA1 L f1 n1 x).
simpl in |- *.
rewrite <- H7.
rewrite <- H6.
rewrite H8.
repeat rewrite cPairProjections.
rewrite H2.
apply cPairProjections.
apply (codeFormulaInj L codeF codeR codeFInj codeRInj).
assumption.
elim H0.
unfold charFunction in |- *.
rewrite beq_nat_not_refl.
rewrite mult_comm.
reflexivity.
assumption.
destruct n1.
simpl in H0.
unfold checkPrfFA2 in H0.
clear A.
repeat first
[ rewrite cPairProjections1 in H0 | rewrite cPairProjections2 in H0 ].
exists (nil (A:=Formula)).
rewrite <- H3 in H0.
rename x into f.
induction
(eq_nat_dec
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 n)))
(cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 n)))
(cPairPi1 (cPairPi2 (cPairPi2 n)))))))
(codeFormula L codeF codeR f)).
repeat
match goal with
| H:(cPair 1 (cPair ?X2 ?X3) = cPair 1 (cPair ?X4 ?X5)) |- _ =>
assert (X2 = X4);
[ eapply cPairInj1; eapply cPairInj2; apply H
| assert (X3 = X5);
[ eapply cPairInj2; eapply cPairInj2; apply H | clear H ] ]
| H:(cPair 3 (cPair ?X2 ?X3) = cPair 3 (cPair ?X4 ?X5)) |- _ =>
assert (X2 = X4);
[ eapply cPairInj1; eapply cPairInj2; apply H
| assert (X3 = X5);
[ eapply cPairInj2; eapply cPairInj2; apply H | clear H ] ]
| H:(cPair ?X1 _ = codeFormula L codeF codeR ?X2) |- _ =>
destruct X2;
simpl in H;
try
match goal with
| J:(cPair ?X1 _ = cPair ?X2 _) |- _ =>
cut (X1 = X2);
[ intro I; discriminate I | eapply cPairInj1; apply J ]
end
end.
rewrite H3.
replace f2 with f1.
rewrite H6 in H0.
rewrite H4 in H0.
rewrite codeFreeVarFormulaCorrect in H0.
rewrite codeInCorrect in H0.
induction (In_dec eq_nat_dec n1 (freeVarFormula L f1)).
elim H0.
reflexivity.
exists (FA2 L f1 n1 b).
simpl in |- *.
rewrite <- H4.
rewrite <- H6.
rewrite cPairProjections.
rewrite H2.
apply cPairProjections.
apply (codeFormulaInj L codeF codeR codeFInj codeRInj).
transitivity (cPairPi1 (cPairPi2 (cPairPi2 n)));
[ symmetry in |- *; assumption | assumption ].
elim H0.
unfold charFunction in |- *.
rewrite beq_nat_not_refl.
rewrite mult_comm.
reflexivity.
assumption.
destruct n1.
simpl in H0.
unfold checkPrfFA3 in H0.
clear A.
repeat first
[ rewrite cPairProjections1 in H0 | rewrite cPairProjections2 in H0 ].
exists (nil (A:=Formula)).
rewrite <- H3 in H0.
rename x into f.
induction
(eq_nat_dec
(cPair 1
(cPair
(cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 n))))
(cPair 1
(cPair (cPairPi1 (cPairPi2 (cPairPi2 n)))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 n))))))))
(cPair 1
(cPair
(cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 n))))
(cPairPi1 (cPairPi2 (cPairPi2 n)))))
(cPair 3
(cPair (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 n))))
(cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 n))))))))))
(codeFormula L codeF codeR f)).
repeat
match goal with
| H:(cPair 1 (cPair ?X2 ?X3) = cPair 1 (cPair ?X4 ?X5)) |- _ =>
assert (X2 = X4);
[ eapply cPairInj1; eapply cPairInj2; apply H
| assert (X3 = X5);
[ eapply cPairInj2; eapply cPairInj2; apply H | clear H ] ]
| H:(cPair 3 (cPair ?X2 ?X3) = cPair 3 (cPair ?X4 ?X5)) |- _ =>
assert (X2 = X4);
[ eapply cPairInj1; eapply cPairInj2; apply H
| assert (X3 = X5);
[ eapply cPairInj2; eapply cPairInj2; apply H | clear H ] ]
| H:(cPair ?X1 _ = codeFormula L codeF codeR ?X2) |- _ =>
destruct X2;
simpl in H;
try
match goal with
| J:(cPair ?X1 _ = cPair ?X2 _) |- _ =>
cut (X1 = X2);
[ intro I; discriminate I | eapply cPairInj1; apply J ]
end
end.
rewrite H3.
replace f2_1 with f1_1.
replace f1_2 with f2_2.
replace n3 with n1.
replace n2 with n1.
exists (FA3 L f1_1 f2_2 n1).
simpl in |- *.
rewrite <- H4.
rewrite <- H8.
rewrite <- H5.
repeat rewrite cPairProjections.
rewrite H2.
apply cPairProjections.
transitivity (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 n))));
[ symmetry in |- *; assumption | assumption ].
transitivity (cPairPi2 (cPairPi2 (cPairPi2 (cPairPi2 n))));
[ symmetry in |- *; assumption | assumption ].
apply (codeFormulaInj L codeF codeR codeFInj codeRInj).
transitivity (cPairPi1 (cPairPi2 (cPairPi2 (cPairPi2 n))));
[ symmetry in |- *; assumption | assumption ].
apply (codeFormulaInj L codeF codeR codeFInj codeRInj).
transitivity (cPairPi1 (cPairPi2 (cPairPi2 n)));
[ symmetry in |- *; assumption | assumption ].
elim H0.
unfold charFunction in |- *.
rewrite beq_nat_not_refl.
reflexivity.
assumption.
destruct n1.
simpl in H0.
unfold checkPrfEQ1 in H0.
clear A.
exists (nil (A:=Formula)).
rewrite <- H3 in H0.
induction
(eq_nat_dec
(codeFormula L codeF codeR (fol.equal L (fol.var L 0) (fol.var L 0)))
(codeFormula L codeF codeR x)).
rewrite H3.
replace x with (fol.equal L (fol.var L 0) (fol.var L 0)).
exists (EQ1