\[\begin{split}\newcommand{\as}{\kw{as}}
\newcommand{\Assum}[3]{\kw{Assum}(#1)(#2:#3)}
\newcommand{\case}{\kw{case}}
\newcommand{\cons}{\textsf{cons}}
\newcommand{\consf}{\textsf{consf}}
\newcommand{\Def}[4]{\kw{Def}(#1)(#2:=#3:#4)}
\newcommand{\emptyf}{\textsf{emptyf}}
\newcommand{\End}{\kw{End}}
\newcommand{\kwend}{\kw{end}}
\newcommand{\even}{\textsf{even}}
\newcommand{\evenO}{\textsf{even}_\textsf{O}}
\newcommand{\evenS}{\textsf{even}_\textsf{S}}
\newcommand{\Fix}{\kw{Fix}}
\newcommand{\fix}{\kw{fix}}
\newcommand{\for}{\textsf{for}}
\newcommand{\forest}{\textsf{forest}}
\newcommand{\Functor}{\kw{Functor}}
\newcommand{\In}{\kw{in}}
\newcommand{\Ind}[4]{\kw{Ind}[#2](#3:=#4)}
\newcommand{\ind}[3]{\kw{Ind}~[#1]\left(#2\mathrm{~:=~}#3\right)}
\newcommand{\Indp}[5]{\kw{Ind}_{#5}(#1)[#2](#3:=#4)}
\newcommand{\Indpstr}[6]{\kw{Ind}_{#5}(#1)[#2](#3:=#4)/{#6}}
\newcommand{\injective}{\kw{injective}}
\newcommand{\kw}[1]{\textsf{#1}}
\newcommand{\length}{\textsf{length}}
\newcommand{\letin}[3]{\kw{let}~#1:=#2~\kw{in}~#3}
\newcommand{\List}{\textsf{list}}
\newcommand{\lra}{\longrightarrow}
\newcommand{\Match}{\kw{match}}
\newcommand{\Mod}[3]{{\kw{Mod}}({#1}:{#2}\,\zeroone{:={#3}})}
\newcommand{\ModA}[2]{{\kw{ModA}}({#1}=={#2})}
\newcommand{\ModS}[2]{{\kw{Mod}}({#1}:{#2})}
\newcommand{\ModType}[2]{{\kw{ModType}}({#1}:={#2})}
\newcommand{\mto}{.\;}
\newcommand{\nat}{\textsf{nat}}
\newcommand{\Nil}{\textsf{nil}}
\newcommand{\nilhl}{\textsf{nil\_hl}}
\newcommand{\nO}{\textsf{O}}
\newcommand{\node}{\textsf{node}}
\newcommand{\nS}{\textsf{S}}
\newcommand{\odd}{\textsf{odd}}
\newcommand{\oddS}{\textsf{odd}_\textsf{S}}
\newcommand{\ovl}[1]{\overline{#1}}
\newcommand{\Pair}{\textsf{pair}}
\newcommand{\plus}{\mathsf{plus}}
\newcommand{\SProp}{\textsf{SProp}}
\newcommand{\Prop}{\textsf{Prop}}
\newcommand{\return}{\kw{return}}
\newcommand{\Set}{\textsf{Set}}
\newcommand{\Sort}{\mathcal{S}}
\newcommand{\Str}{\textsf{Stream}}
\newcommand{\Struct}{\kw{Struct}}
\newcommand{\subst}[3]{#1\{#2/#3\}}
\newcommand{\tl}{\textsf{tl}}
\newcommand{\tree}{\textsf{tree}}
\newcommand{\trii}{\triangleright_\iota}
\newcommand{\Type}{\textsf{Type}}
\newcommand{\WEV}[3]{\mbox{$#1[] \vdash #2 \lra #3$}}
\newcommand{\WEVT}[3]{\mbox{$#1[] \vdash #2 \lra$}\\ \mbox{$ #3$}}
\newcommand{\WF}[2]{{\mathcal{W\!F}}(#1)[#2]}
\newcommand{\WFE}[1]{\WF{E}{#1}}
\newcommand{\WFT}[2]{#1[] \vdash {\mathcal{W\!F}}(#2)}
\newcommand{\WFTWOLINES}[2]{{\mathcal{W\!F}}\begin{array}{l}(#1)\\\mbox{}[{#2}]\end{array}}
\newcommand{\with}{\kw{with}}
\newcommand{\WS}[3]{#1[] \vdash #2 <: #3}
\newcommand{\WSE}[2]{\WS{E}{#1}{#2}}
\newcommand{\WT}[4]{#1[#2] \vdash #3 : #4}
\newcommand{\WTE}[3]{\WT{E}{#1}{#2}{#3}}
\newcommand{\WTEG}[2]{\WTE{\Gamma}{#1}{#2}}
\newcommand{\WTM}[3]{\WT{#1}{}{#2}{#3}}
\newcommand{\zeroone}[1]{[{#1}]}
\end{split}\]
Basic proof writing¶
Coq is an interactive theorem prover, or proof assistant, which means that proofs can be constructed interactively through a dialog between the user and the assistant. The building blocks for this dialog are tactics which the user will use to represent steps in the proof of a theorem.
The first section presents the proof mode (the core mechanism of the dialog between the user and the proof assistant). Then, several sections describe the available tactics. The last section covers the SSReflect proof language, which provides a consistent alternative set of tactics to the standard basic tactics.
Additional tactics are documented in the next chapter Automatic solvers and programmable tactics.