Hipattern
High-order patterns
Given a term with second-order variables in it, represented by Meta's, and possibly applied using SoApp terms, this function will perform second-order, binding-preserving, matching, in the case where the pattern is a pattern in the sense of Dale Miller.
ALGORITHM:
Given a pattern, we decompose it, flattening casts and apply's, recursing on all operators, and pushing the name of the binder each time we descend a binder.
When we reach a first-order variable, we ask that the corresponding term's free-rels all be higher than the depth of the current stack.
When we reach a second-order application, we ask that the intersection of the free-rels of the term and the current stack be contained in the arguments of the application
I implemented the following functions which test whether a term t
is an inductive but non-recursive type, a general conjunction, a general disjunction, or a type with no constructors.
They are more general than matching with or_term
, and_term
, etc, since they do not depend on the name of the type. Hence, they also work on ad-hoc disjunctions introduced by the user. (Eduardo, 6/8/97).
type 'a matching_function = Environ.env -> Evd.evar_map -> EConstr.constr -> 'a option
type testing_function = Environ.env -> Evd.evar_map -> EConstr.constr -> bool
val match_with_non_recursive_type : (EConstr.constr * EConstr.constr list) matching_function
val is_non_recursive_type : testing_function
val match_with_disjunction : ?strict:bool -> ?onlybinary:bool -> (EConstr.constr * EConstr.constr list) matching_function
Non recursive type with no indices and exactly one argument for each constructor; canonical definition of n-ary disjunction if strict
val is_disjunction : ?strict:bool -> ?onlybinary:bool -> testing_function
val match_with_conjunction : ?strict:bool -> ?onlybinary:bool -> (EConstr.constr * EConstr.constr list) matching_function
Non recursive tuple (one constructor and no indices) with no inner dependencies; canonical definition of n-ary conjunction if strict
val is_conjunction : ?strict:bool -> ?onlybinary:bool -> testing_function
val match_with_record : (EConstr.constr * EConstr.constr list) matching_function
Non recursive tuple, possibly with inner dependencies
val is_record : testing_function
val match_with_tuple : (EConstr.constr * EConstr.constr list * bool) matching_function
Like record but supports and tells if recursive (e.g. Acc)
val is_tuple : testing_function
val match_with_empty_type : EConstr.constr matching_function
No constructor, possibly with indices
val is_empty_type : testing_function
val match_with_unit_or_eq_type : EConstr.constr matching_function
type with only one constructor and no arguments, possibly with indices
val is_unit_or_eq_type : testing_function
val is_unit_type : testing_function
type with only one constructor and no arguments, no indices
val is_inductive_equality : Environ.env -> Names.inductive -> bool
type with only one constructor, no arguments and at least one dependency
val match_with_equality_type : (EConstr.constr * EConstr.constr list) matching_function
val is_equality_type : testing_function
val match_with_nottype : (EConstr.constr * EConstr.constr) matching_function
val is_nottype : testing_function
val match_with_forall_term : (Names.Name.t Context.binder_annot * EConstr.constr * EConstr.constr) matching_function
val is_forall_term : testing_function
val match_with_imp_term : (EConstr.constr * EConstr.constr) matching_function
val is_imp_term : testing_function
I added these functions to test whether a type contains dependent products or not, and if an inductive has constructors with dependent types (excluding parameters). this is useful to check whether a conjunction is a real conjunction and not a dependent tuple. (Pierre Corbineau, 13/5/2002)
val has_nodep_prod_after : int -> testing_function
val has_nodep_prod : testing_function
val match_with_nodep_ind : (EConstr.constr * EConstr.constr list * int) matching_function
val is_nodep_ind : testing_function
val match_with_sigma_type : (EConstr.constr * EConstr.constr list) matching_function
val is_sigma_type : testing_function
Recongnize inductive relation defined by reflexivity
type equation_kind =
| MonomorphicLeibnizEq of EConstr.constr * EConstr.constr |
| PolymorphicLeibnizEq of EConstr.constr * EConstr.constr * EConstr.constr |
| HeterogenousEq of EConstr.constr * EConstr.constr * EConstr.constr * EConstr.constr |
val match_with_equation : Environ.env -> Evd.evar_map -> EConstr.constr -> Coqlib.coq_eq_data option * EConstr.constr * equation_kind
val find_eq_data_decompose : Environ.env -> Evd.evar_map -> EConstr.constr -> Coqlib.coq_eq_data * EConstr.EInstance.t * (EConstr.types * EConstr.constr * EConstr.constr)
Match terms eq A t u
, identity A t u
or JMeq A t A u
Returns associated lemmas and A,t,u
or fails PatternMatchingFailure
val find_this_eq_data_decompose : Environ.env -> Evd.evar_map -> EConstr.constr -> Coqlib.coq_eq_data * EConstr.EInstance.t * (EConstr.types * EConstr.constr * EConstr.constr)
Idem but fails with an error message instead of PatternMatchingFailure
val find_eq_data : Evd.evar_map -> EConstr.constr -> Coqlib.coq_eq_data * EConstr.EInstance.t * equation_kind
A variant that returns more informative structure on the equality found
val find_sigma_data_decompose : Environ.env -> Evd.evar_map -> EConstr.constr -> Coqlib.coq_sigma_data * (EConstr.EInstance.t * EConstr.constr * EConstr.constr * EConstr.constr * EConstr.constr)
Match a term of the form (existT A P t p)
Returns associated lemmas and A,P,t,p
val match_sigma : Environ.env -> Evd.evar_map -> EConstr.constr -> EConstr.constr * EConstr.constr
Match a term of the form {x:A|P}
, returns A
and P
val is_matching_sigma : Environ.env -> Evd.evar_map -> EConstr.constr -> bool
val match_eqdec : Environ.env -> Evd.evar_map -> EConstr.constr -> bool * Names.GlobRef.t * EConstr.constr * EConstr.constr * EConstr.constr
Match a decidable equality judgement (e.g {t=u:>T}+{~t=u}
), returns t,u,T
and a boolean telling if equality is on the left side
val is_matching_not : Environ.env -> Evd.evar_map -> EConstr.constr -> bool
Match a negation
val is_matching_imp_False : Environ.env -> Evd.evar_map -> EConstr.constr -> bool