Declarations
This module defines the internal representation of global declarations. This includes global constants/axioms, mutual inductive definitions, modules and module types
Non-universe polymorphic mode polymorphism (Coq 8.2+): inductives and constants hiding inductives are implicitly polymorphic when applied to parameters, on the universes appearing in the whnf of their parameters and their conclusion, in a template style.
In truly universe polymorphic mode, we always use RegularArity.
type template_universes = {
template_param_levels : Univ.Level.t option list; |
template_context : Univ.ContextSet.t; |
}
Inlining level of parameters at functor applications. None means no inlining
A constant can have no body (axiom/parameter), or a transparent body, or an opaque one
type ('a, 'opaque) constant_def =
| Undef of inline | (* a global assumption *) |
| Def of 'a | (* or a transparent global definition *) |
| OpaqueDef of 'opaque | (* or an opaque global definition *) |
| Primitive of CPrimitives.t | (* or a primitive operation *) |
type typing_flags = {
check_guarded : bool; | (* If |
check_positive : bool; | (* If |
check_universes : bool; | (* If |
conv_oracle : Conv_oracle.oracle; | (* Unfolding strategies for conversion *) |
share_reduction : bool; | (* Use by-need reduction algorithm *) |
enable_VM : bool; | (* If |
enable_native_compiler : bool; | (* If |
indices_matter : bool; | (* The universe of an inductive type must be above that of its indices. *) |
impredicative_set : bool; | (* Predicativity of the |
sprop_allowed : bool; | (* If |
allow_uip : bool; | (* Allow definitional UIP (breaks termination) *) |
}
The typing_flags
are instructions to the type-checker which modify its behaviour. The typing flags used in the type-checking of a constant are tracked in their constant_body
so that they can be displayed to the user.
type 'opaque pconstant_body = {
const_hyps : Constr.named_context; | (* younger hyp at top *) |
const_univ_hyps : Univ.Instance.t; | |
const_body : ( Constr.t, 'opaque ) constant_def; | |
const_type : Constr.types; | |
const_relevance : Sorts.relevance; | |
const_body_code : Vmemitcodes.body_code option; | |
const_universes : universes; | |
const_inline_code : bool; | |
const_typing_flags : typing_flags; | (* The typing options which were used for type-checking. *) |
}
type constant_body = Opaqueproof.opaque pconstant_body
Representation of mutual inductive types in the kernel
Inductive I1 (params) : U1 := c11 : T11 | ... | c1p1 : T1p1 ... with In (params) : Un := cn1 : Tn1 | ... | cnpn : Tnpn
Record information: If the type is not a record, then NotRecord If the type is a non-primitive record, then FakeRecord If it is a primitive record, for every type in the block, we get:
The kernel does not exploit the difference between NotRecord
and FakeRecord
. It is mostly used by extraction, and should be extruded from the kernel at some point.
type record_info =
| NotRecord |
| FakeRecord |
| PrimRecord of (Names.Id.t
* Names.Label.t array
* Sorts.relevance array
* Constr.types array)
array |
type inductive_arity =
( regular_inductive_arity, template_arity ) declaration_arity
type one_inductive_body = {
mind_typename : Names.Id.t; | (* Name of the type: |
mind_arity_ctxt : Constr.rel_context; | (* Arity context of |
mind_arity : inductive_arity; | (* Arity sort and original user arity *) |
mind_consnames : Names.Id.t array; | (* Names of the constructors: |
mind_user_lc : Constr.types array; | (* Types of the constructors with parameters: |
mind_nrealargs : int; | (* Number of expected real arguments of the type (no let, no params) *) |
mind_nrealdecls : int; | (* Length of realargs context (with let, no params) *) |
mind_kelim : Sorts.family; | (* Highest allowed elimination sort *) |
mind_nf_lc : (Constr.rel_context * Constr.types) array; | (* Head normalized constructor types so that their conclusion exposes the inductive type. It includes the parameters, i.e. each component of the array has the form |
mind_consnrealargs : int array; | (* Number of expected proper arguments of the constructors (w/o params) *) |
mind_consnrealdecls : int array; | (* Length of the signature of the constructors (with let, w/o params) *) |
mind_recargs : wf_paths; | (* Signature of recursive arguments in the constructors *) |
mind_relevance : Sorts.relevance; | |
mind_nb_constant : int; | (* number of constant constructor *) |
mind_nb_args : int; | (* number of no constant constructor *) |
mind_reloc_tbl : Vmvalues.reloc_table; |
}
Datas specific to a single type of a block of mutually inductive type
type mutual_inductive_body = {
mind_packets : one_inductive_body array; | (* The component of the mutual inductive block *) |
mind_record : record_info; | (* The record information *) |
mind_finite : recursivity_kind; | (* Whether the type is inductive or coinductive *) |
mind_ntypes : int; | (* Number of types in the block *) |
mind_hyps : Constr.named_context; | (* Section hypotheses on which the block depends *) |
mind_univ_hyps : Univ.Instance.t; | (* Section polymorphic universes. *) |
mind_nparams : int; | (* Number of expected parameters including non-uniform ones (i.e. length of mind_params_ctxt w/o let-in) *) |
mind_nparams_rec : int; | (* Number of recursively uniform (i.e. ordinary) parameters *) |
mind_params_ctxt : Constr.rel_context; | (* The context of parameters (includes let-in declaration) *) |
mind_universes : universes; | (* Information about monomorphic/polymorphic/cumulative inductives and their universes *) |
mind_template : template_universes option; | |
mind_variance : Univ.Variance.t array option; | (* Variance info, |
mind_sec_variance : Univ.Variance.t array option; | (* Variance info for section polymorphic universes. |
mind_private : bool option; | (* allow pattern-matching: Some true ok, Some false blocked *) |
mind_typing_flags : typing_flags; | (* typing flags at the time of the inductive creation *) |
}
type mind_specif = mutual_inductive_body * one_inductive_body
Functor expressions are forced to be on top of other expressions
type ('ty, 'a) functorize =
| NoFunctor of 'a |
| MoreFunctor of Names.MBId.t * 'ty * ( 'ty, 'a ) functorize |
The fully-algebraic module expressions : names, applications, 'with ...'. They correspond to the user entries of non-interactive modules. They will be later expanded into module structures in Mod_typing
, and won't play any role into the kernel after that : they are kept only for short module printing and for extraction.
type 'uconstr with_declaration =
| WithMod of Names.Id.t list * Names.ModPath.t |
| WithDef of Names.Id.t list * 'uconstr |
type 'uconstr module_alg_expr =
| MEident of Names.ModPath.t |
| MEapply of 'uconstr module_alg_expr * Names.ModPath.t |
| MEwith of 'uconstr module_alg_expr * 'uconstr with_declaration |
type 'uconstr functor_alg_expr =
| MENoFunctor of 'uconstr module_alg_expr |
| MEMoreFunctor of 'uconstr functor_alg_expr |
A module expression is an algebraic expression, possibly functorized.
type module_expression =
(Constr.constr * Univ.AbstractContext.t option) functor_alg_expr
A component of a module structure
type structure_field_body =
| SFBconst of constant_body |
| SFBmind of mutual_inductive_body |
| SFBmodule of module_body |
| SFBmodtype of module_type_body |
A module structure is a list of labeled components.
Note : we may encounter now (at most) twice the same label in a structure_body
, once for a module (SFBmodule
or SFBmodtype
) and once for an object (SFBconst
or SFBmind
)
and structure_body = (Names.Label.t * structure_field_body) list
A module signature is a structure, with possibly functors on top of it
and module_signature = ( module_type_body, structure_body ) functorize
and module_implementation =
| Abstract | (* no accessible implementation *) |
| Algebraic of module_expression | (* non-interactive algebraic expression *) |
| Struct of structure_body | (* interactive body living in the parameter context of |
| FullStruct | (* special case of |
and 'a generic_module_body = {
mod_mp : Names.ModPath.t; | (* absolute path of the module *) |
mod_expr : 'a; | (* implementation *) |
mod_type : module_signature; | (* expanded type *) |
mod_type_alg : module_expression option; | (* algebraic type *) |
mod_delta : Mod_subst.delta_resolver; | (* quotiented set of equivalent constants and inductive names *) |
mod_retroknowledge : 'a module_retroknowledge; |
}
For a module, there are five possible situations:
Declare Module M : T
then mod_expr = Abstract; mod_type_alg = Some T
Module M := E
then mod_expr = Algebraic E; mod_type_alg = None
Module M : T := E
then mod_expr = Algebraic E; mod_type_alg = Some T
Module M. ... End M
then mod_expr = FullStruct; mod_type_alg = None
Module M : T. ... End M
then mod_expr = Struct; mod_type_alg = Some T
And of course, all these situations may be functors or not.and module_body = module_implementation generic_module_body
A module_type_body
is just a module_body
with no implementation and also an empty mod_retroknowledge
. Its mod_type_alg
contains the algebraic definition of this module type, or None
if it has been built interactively.
and module_type_body = unit generic_module_body
and _ module_retroknowledge =
| ModBodyRK : Retroknowledge.action list -> module_implementation
module_retroknowledge |
| ModTypeRK : unit module_retroknowledge |
Extra invariants :
MEwith
inside a mod_expr
implementation : the 'with' syntax is only supported for module typesMEapply
can only be another MEapply
or a MEident
* the argument of MEapply
is now directly forced to be a ModPath.t
.