Cc_core_plugin.Ccproof
type rule =
| Ax of Ccalgo.axiom | (* if ⊢ t = u :: A, then ⊢ t = u :: A *) |
| SymAx of Ccalgo.axiom | (* if ⊢ t = u : A, then ⊢ u = t :: A *) |
| Refl of Ccalgo.ATerm.t | |
| Trans of proof * proof | (* ⊢ t = u :: A -> ⊢ u = v :: A -> ⊢ t = v :: A *) |
| Congr of proof * proof | (* ⊢ f = g :: forall x : A, B -> ⊢ t = u :: A -> f t = g u :: B |
| Inject of proof * Constr.pconstructor * int * int | (* ⊢ ci v = ci w :: Ind(args) -> ⊢ v = w :: T where T is the type of the n-th argument of ci, assuming they coincide *) |
Main proof building function
val build_proof : Environ.env -> Evd.evar_map -> Ccalgo.forest -> [ `Discr of int * Ccalgo.pa_constructor * int * Ccalgo.pa_constructor | `Prove of int * int ] -> proof