Library Stdlib.Wellfounded.Inverse_Image
Author: Bruno Barras
Section Inverse_Image.
Variables A B : Type.
Variable R : B -> B -> Prop.
Variable f : A -> B.
Let Rof (x y:A) : Prop := R (f x) (f y).
Remark Acc_lemma : forall y:B, Acc R y -> forall x:A, y = f x -> Acc Rof x.
Lemma Acc_inverse_image : forall x:A, Acc R (f x) -> Acc Rof x.
Theorem wf_inverse_image : well_founded R -> well_founded Rof.
Variable F : A -> B -> Prop.
Let RoF (x y:A) : Prop :=
exists2 b : B, F x b & (forall c:B, F y c -> R b c).
Lemma Acc_simulation (Q : A -> A -> Prop) :
forall b, Acc R b ->
(forall a1 a2 b1, Q a2 a1 -> F a1 b1 -> exists b2, F a2 b2 /\ R b2 b1) ->
forall a, F a b -> Acc Q a.
Lemma wf_simulation (Q : A -> A -> Prop) :
well_founded R ->
(forall a1 a2, Q a2 a1 -> exists b2, F a2 b2) ->
(forall a1 a2 b1, Q a2 a1 -> F a1 b1 -> exists b2, F a2 b2 /\ R b2 b1) ->
well_founded Q.
Lemma Acc_inverse_rel : forall b:B, Acc R b -> forall x:A, F x b -> Acc RoF x.
Theorem wf_inverse_rel : well_founded R -> well_founded RoF.
End Inverse_Image.