\[\begin{split}\newcommand{\as}{\kw{as}}
\newcommand{\case}{\kw{case}}
\newcommand{\cons}{\textsf{cons}}
\newcommand{\consf}{\textsf{consf}}
\newcommand{\emptyf}{\textsf{emptyf}}
\newcommand{\End}{\kw{End}}
\newcommand{\kwend}{\kw{end}}
\newcommand{\even}{\textsf{even}}
\newcommand{\evenO}{\textsf{even}_\textsf{O}}
\newcommand{\evenS}{\textsf{even}_\textsf{S}}
\newcommand{\Fix}{\kw{Fix}}
\newcommand{\fix}{\kw{fix}}
\newcommand{\for}{\textsf{for}}
\newcommand{\forest}{\textsf{forest}}
\newcommand{\Functor}{\kw{Functor}}
\newcommand{\In}{\kw{in}}
\newcommand{\ind}[3]{\kw{Ind}~[#1]\left(#2\mathrm{~:=~}#3\right)}
\newcommand{\Indp}[4]{\kw{Ind}_{#4}[#1](#2:=#3)}
\newcommand{\Indpstr}[5]{\kw{Ind}_{#4}[#1](#2:=#3)/{#5}}
\newcommand{\injective}{\kw{injective}}
\newcommand{\kw}[1]{\textsf{#1}}
\newcommand{\length}{\textsf{length}}
\newcommand{\letin}[3]{\kw{let}~#1:=#2~\kw{in}~#3}
\newcommand{\List}{\textsf{list}}
\newcommand{\lra}{\longrightarrow}
\newcommand{\Match}{\kw{match}}
\newcommand{\Mod}[3]{{\kw{Mod}}({#1}:{#2}\,\zeroone{:={#3}})}
\newcommand{\ModImp}[3]{{\kw{Mod}}({#1}:{#2}:={#3})}
\newcommand{\ModA}[2]{{\kw{ModA}}({#1}=={#2})}
\newcommand{\ModS}[2]{{\kw{Mod}}({#1}:{#2})}
\newcommand{\ModType}[2]{{\kw{ModType}}({#1}:={#2})}
\newcommand{\mto}{.\;}
\newcommand{\nat}{\textsf{nat}}
\newcommand{\Nil}{\textsf{nil}}
\newcommand{\nilhl}{\textsf{nil\_hl}}
\newcommand{\nO}{\textsf{O}}
\newcommand{\node}{\textsf{node}}
\newcommand{\nS}{\textsf{S}}
\newcommand{\odd}{\textsf{odd}}
\newcommand{\oddS}{\textsf{odd}_\textsf{S}}
\newcommand{\ovl}[1]{\overline{#1}}
\newcommand{\Pair}{\textsf{pair}}
\newcommand{\plus}{\mathsf{plus}}
\newcommand{\SProp}{\textsf{SProp}}
\newcommand{\Prop}{\textsf{Prop}}
\newcommand{\return}{\kw{return}}
\newcommand{\Set}{\textsf{Set}}
\newcommand{\Sort}{\mathcal{S}}
\newcommand{\Str}{\textsf{Stream}}
\newcommand{\Struct}{\kw{Struct}}
\newcommand{\subst}[3]{#1\{#2/#3\}}
\newcommand{\tl}{\textsf{tl}}
\newcommand{\tree}{\textsf{tree}}
\newcommand{\trii}{\triangleright_\iota}
\newcommand{\Type}{\textsf{Type}}
\newcommand{\WEV}[3]{\mbox{$#1[] \vdash #2 \lra #3$}}
\newcommand{\WEVT}[3]{\mbox{$#1[] \vdash #2 \lra$}\\ \mbox{$ #3$}}
\newcommand{\WF}[2]{{\mathcal{W\!F}}(#1)[#2]}
\newcommand{\WFE}[1]{\WF{E}{#1}}
\newcommand{\WFT}[2]{#1[] \vdash {\mathcal{W\!F}}(#2)}
\newcommand{\WFTWOLINES}[2]{{\mathcal{W\!F}}\begin{array}{l}(#1)\\\mbox{}[{#2}]\end{array}}
\newcommand{\with}{\kw{with}}
\newcommand{\WS}[3]{#1[] \vdash #2 <: #3}
\newcommand{\WSE}[2]{\WS{E}{#1}{#2}}
\newcommand{\WT}[4]{#1[#2] \vdash #3 : #4}
\newcommand{\WTE}[3]{\WT{E}{#1}{#2}{#3}}
\newcommand{\WTEG}[2]{\WTE{\Gamma}{#1}{#2}}
\newcommand{\WTM}[3]{\WT{#1}{}{#2}{#3}}
\newcommand{\zeroone}[1]{[{#1}]}
\end{split}\]
Core language
At the heart of the Coq proof assistant is the Coq kernel. While
users have access to a language with many convenient features such as
notations,
implicit arguments, etc. (presented in the
next chapter), those features are translated into
the core language (the Calculus of Inductive Constructions) that the
kernel understands, which we present here. Furthermore, while users
can build proofs interactively using tactics (see Chapter
Basic proof writing), the role of these tactics is to incrementally
build a "proof term" which the kernel will verify. More precisely, a
proof term is a term of the Calculus of Inductive
Constructions whose type corresponds to a theorem statement.
The kernel is a type checker which verifies that terms have their
expected types.
This separation between the kernel on one hand and the
elaboration engine and tactics on the other follows what is known as the de
Bruijn criterion (keeping a small and well delimited trusted code
base within a proof assistant which can be much more complex). This
separation makes it necessary to trust only a smaller, critical
component (the kernel) instead of the entire system. In particular,
users may rely on external plugins that provide advanced and complex
tactics without fear of these tactics being buggy, because the kernel
will have to check their output.