Type-Based Termination in Coq

Gilles Barthe Benjamin Grégoire Fernando Pastawski
Jorge Luis Sacchini

February 2, 2010

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010 1/25

Outline

© Recursive Definitions in Coq

Gilles Barthe et al. ()

Type-Based Termination in Coq

Defining recursive functions

In systems like Coq, termination is ensured by syntactic criterion.

Recursive functions must have a type of the form | — T, where / is an
inductive type.

rMfF:l—-T)F-M: 1 =T Gg(f, M)
Fr-(fixf:l—-T:=M):1—->T

@ The predicate G(f, M) checks that all recursive calls of f in M are
guarded by destructors;

@ Reduction is restricted to constructor forms:

(fix f:l =T =M)C—-M[f=(fixf:|->T:=M)]C
C must be headed by a constructor
Gilles Barthe et al. ()

Type-Based Termination in Coq February 2, 2010 3/25

Guard predicate

@ Syntax sensitive
o Difficult to understand (e.g. div/minus, map)
@ Too weak (e.g. do not allow functions like quicksort)

o Difficult to implement

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010 4 /25

Outline

© Type-Based Termination

Gilles Barthe et al. ()

Type-Based Termination in Coq

Sized Types

@ Most type systems for termination are based on the notion of sized
types: user-defined datatypes are decorated with size information.

» Ex: Nat® (natural numbers smaller than s)
@ User-defined datatypes are represented by fixpoints of some monotone
operator
Nat ::= O : Nat | S : Nat — Nat
@ Sized types are approximations of these operators
» Nat™ ={0,1,2,...}

> Nat® = {0,1,....s — 1}
> Nat® < Nat*™ < ... < Nat™

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010 6 /25

Sized Types

With sized types, recursive functions are defined on approximations of an
inductive type:
(1l —=T)FM: " - T
NrE(fix f:l—>T:=M):1° =T

@ Recursive call are only allowed on terms of smaller size

@ The reduction rule is not changed:

(fix f:l=>T:=MC—->M[f=(Ffixf:|->T:=M)]C

if C is in constructor form.

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010

7/25

Outline

© CIC™ an extension of CIC with sized inductive types
@ Examples
@ Properties

Gilles Barthe et al. ()

Type-Based Termination in Coq

DA

CIC™: Syntax and Typing Rules

Inductive types

@ Inductive types are decorated with a size (or stage) expression:
/S

@ Stages:
su=1|5| o0

@ Subtyping: less-or-equal relation on stages

(00 C 0 C o)

sCs sC oo

defines the subtyping rule:

s <1

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010

9/25

CIC™: Syntax and Typing Rules

Inductive types

Inductive Nat := O : Nat | S : Nat — Nat

= M: Nat®
[O: Nat® F-SM: Nat®

@ Constructors are always fully applied

@ Subtype relation defined by

sCr
Nat® < Nat"

Ex: Nat' < Nat' < Nat™, but Nat* % Nat"®.

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010

10 /25

CIC™: Syntax and Typing Rules

Inductive types

Inductive Ord := O : Ord
| S: Ord — Ord
| lim : (Nat — Ord) — Ord

= M: Ord®
F-O:Oord® F[-SM: Ord®

M+ F: Nat>™® — Ord®
[+ lim F: Ord®

@ Previously defined inductive types are tagged with oo

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010

11 /25

CIC™: Syntax and Typing Rules

Implicit size polymorphism

@ Sizes are not first-class terms

@ We have a form of implicit size polymorphism: sizes are not applied
nor explicitly quantified.

@ This allows to keep the same reduction mechanism

@ But to keep Subject Reduction, terms in type positions have no size

information. Ex:
F Ax : Nat.x : Nat® — Nat®, for any s

@ Type positions includes: types of abstraction, case, fixpoint, and
parameters of constructors.

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010 12 / 25

CIC™: Syntax and Typing Rules

Inductive types with parameters

@ Parameters can have a polarity.

Inductive Tree(A+ : Type)(B— : Type) :=
| leaf : A— Tree AB
| node : (B — Tree AB) — Tree AB

@ Subtyping rule: Tree* Nat® Nat™ < Tree' Nat> Nat*

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010

13 /25

CIC™: Syntax and Typing Rules

Inductive types with parameters
@ Parameters can have a polarity.
Inductive Tree(A+ : Type)(B— : Type) :=

| leaf : A— Tree AB
| node : (B — Tree AB) — Tree AB

@ Subtyping rule: Tree* Nat® Nat™ < Tree' Nat> Nat*

@ Size information on parameters of constructors is erased

= A: Type = B: Type rN-M: A
[+ leaf |A||B| M : Tree* AB

= A: Type I B: Type FrN-M:B— Tree* AB

[+ node|A||B| M : Tree* AB

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010

13 /25

CIC™: Syntax and Typing Rules

Fixpoint rule

Fixpoint: fix f: T*:= M

T =TMx: Nat".U L pos U
¢ does not appear in ', M rfF:THEM: T
Fe(fix f: T :=M): T°

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010

14 / 25

CIC™: Syntax and Typing Rules

Fixpoint rule

Fixpoint: fix f: T*:= M

T =TMx: Nat".U L pos U
¢ does not appear in ', M rfF:THEM: T
Fe(fix f: T :=M): T°

@ T* is a position type: size annotations are either empty, or x to
indicate recursive positions.

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010

14 / 25

CIC™: Syntax and Typing Rules

Fixpoint rule

Fixpoint: fix f: T*:= M

T =TMx: Nat".U L pos U
¢ does not appear in ', M rfF:THEM: T
Fe(fix f: T :=M): T°

@ T* is a position type: size annotations are either empty, or x to
indicate recursive positions. Ex:

» | (fix f : Nat* — Nat := Ax : Nat.O) : Nat" — Nat"

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010

14 / 25

CIC™: Syntax and Typing Rules

Fixpoint rule

Fixpoint: fix f: T*:= M

T =TMx: Nat".U L pos U
¢ does not appear in ', M rfF:THEM: T
Fe(fix f: T :=M): T°

@ T* is a position type: size annotations are either empty, or x to
indicate recursive positions. Ex:
» | (fix f : Nat* — Nat := Ax : Nat.O) : Nat" — Nat"
» (fix f: Nat* — Nat* := Ax : Nat.O) : Nat* — Nat"

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010

14 / 25

CIC™: Syntax and Typing Rules

Fixpoint rule

Fixpoint: fix f: T*:= M

T =TMx: Nat".U L pos U
¢ does not appear in ', M rfF:THEM: T
Fe(fix f: T :=M): T°

@ T* is a position type: size annotations are either empty, or x to
indicate recursive positions. Ex:

» | (fix f : Nat* — Nat := Ax : Nat.O) : Nat" — Nat"

» (fix f: Nat* — Nat* := Ax : Nat.O) : Nat* — Nat"
@ They are useful to have compact general types:

» F (fix f : Nat — Nat := A\x : Nat.O) :?

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010

14 / 25

CIC™: Syntax and Typing Rules

Fixpoint rule

@ Types for fixpoint must be of the form
NA.(x : 1'3).U

with ¢ pos U, and ¢ does not appear in A

o Ex:
» Nat' — Nat'
» Nat® — Nat>™ — Nat" (div, minus)
» List* A— List" A (filter, map)

@ Not allowed for fixpoint
» Nat" — Nat" — Nat" (max)
» (Nat™ — Nat") — Nat™ (leads to non-termination) [Abel]

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010

15 / 25

CIC™: Syntax and Typing Rules

Fixpoint rule

Fixpoint: fix f : T*:= M

T=NA.(x:1"3).U #A=n—-1 ¢t pos U
¢ does not appearinl, A, 3, M
rfF-T)YEM:T[:=1]

e (fixy £:|T| :=M): T[:=5]

@ pu-reduction:
(fixp f: T :=M)i C —, M[f :=(fix, f: T*:=M)] i C

if #0=n—1 and C is headed by a constructor

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010 16 / 25

Example: subtraction

(minus : Nat* — Nat>™ — Nat') -
Ax : Nat" Ay : Nat™.
case x of
| 0= 0 - Nat*
| Sx“t = case y of
| O=x . Nat*
| SylNet™ = minus x; y; : Nat*

. Nat® — Nat™® — Nat®

F fix minus : Nat* — Nat — Nat* := ... : Nat® — Nat>™® — Nat®

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010

17 / 25

Example: subtraction

(minus : Nat* — Nat>™ — Nat') -
Ax : Nat" Ay : Nat™.
case x of
| 0= 0 (xx%) :Nat"
| Sx“t = case y of
| O=x(xSx %) : Nat"
| SylNet™ = minus x; y; : Nat*
- Nat' — Nat™ — Nat®

F fix minus : Nat* — Nat — Nat* := ... : Nat® — Nat>™® — Nat®

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010

17 / 25

Example: division

divmn:[m -‘
n+1

(div : Nat* — Nat>™ — Nat') -
Ax 1 Nat' Ay : Nat™.
case x of
| 0= 0 : Nat"
| Sxet = S(div (minus x; y)
- Nat' — Nat™ — Nat®

Nat* y) Nat*

F fix div : Nat* — Nat — Nat* :=...: Nat® — Nat*™ — Nat®

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010

18 / 25

Example: quicksort

filter = ... : MA.(A — bool) — List® A — List* A
append = ... : MA.List° A — List" A — List* A

quicksort = (AA.fixquicksort : List* A — List A :=
Ax : List" A.case x of

| nil = nil

List* A List* A)

| cons x xs = append(quicksort (filter(< x)xs)

(cons x (quicksort (filter(> x)xs)-t" 4)

): MA.List® A— List™* A

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010 19 / 25

Properties

CIC™ satisfies several desired metatheoretical properties:
@ Confluent reduction
@ Substitution
@ Subject Reduction
@ Decidability of Type Checking (assuming Strong Normalization)

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010 20 / 25

Type Inference

There exists an algorithm that given an unannotated context I and an
unannotated term M it returns either:

@ an error if there is no well-typed annotation of M in I; or

@ a fully annotated context '™, a fully annotated term M™ and a type
of the form C = T where C is a set of constraints such that:

Soundness for every stage substitution p satisfying C, we have
FpH Mp: Tp;

Completeness for every stage substitution p’ and annotation M’ of M such

that Tp' = M’ : T, there exists p satisfying C such that
Frp="Tp and Mp=M"and Tp< T'.

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010 21 /25

Outline

@ Conclusions and Future Work

Gilles Barthe et al. ()

Type-Based Termination in Coq

Conclusions

@ Type-based termination is more practical and simpler than syntactic
criterions

@ Size inference

@ Not much more complicated for the user

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010 23 /25

Future Work

@ Metatheoretical properties: consistency and strong normalization

» Limited results: CC with universes and sized natural numbers, but a
restricted type system with respect to CIC™.

@ Global definitions
@ Coinductive types

@ Mutually recursive functions

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010 24 /25

Future Work

@ Explicit stage polymorphism:

Fr=M: T ¢t does not appear in M
Fr=M:v.. T

Ex: F Ax : Nat.x : Vie.Nat* — Nat*

@ More operations on sizes: +, max,. ..
» append : List* A — List" A — List'T" A

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010

25 / 25

Future Work

@ Explicit stage polymorphism:

Fr=M: T ¢t does not appear in M
Fr=M:v.. T

Ex: F Ax : Nat.x : Vie.Nat* — Nat*

@ More operations on sizes: +, max,. ..
» append : List* A — List" A — List'T" A

Thank you! Questions?

Gilles Barthe et al. () Type-Based Termination in Coq February 2, 2010

25 / 25

	Recursive Definitions in Coq
	Type-Based Termination
	CIC "0362 : an extension of CIC with sized inductive types
	Examples
	Properties

	Conclusions and Future Work

