The Dark Side of £,,.

Bruno Barras

ADT - Coq

30/06/09

B. Barras

The Dark Side of L4

LCF vs L;.:

o LCF tactics
type tactic =
goal — (goal list * (proof list — proof))

apply : term — tactic
@ Tacticals
then : tactic — tactic — tactic

@ meta-language support vs toplevel
term API vs what?

L. provides term manipulation facilities

B. Barras

The Dark Side of L4

Why Lqc?

Features of £,,.

o Untyped

@ Functional (exceptions, no mutable variables)
o Call-by-Value

@ Toplevel side-effects (Ltac ::=)

@ Dedicated operators (match with backtrack)
@ Goal passed implicitely
@ Dynamic link (goal context)

B. Barras

The Dark Side of L4

Semantic puzzles

Evaluation strategy

Example (A tactic that proves True)

Ltac prove_true :=
let H := fresh in assert (H:=I).

B. Barras

The Dark Side of L4

Semantic puzzles

Evaluation strategy

Example (A tactic that proves True)

Ltac prove_true :=
let H := fresh in assert (H:=I).

But 1let f := prove_true in f; f ~» name clash!
(prove_true; prove_true is OK)

B. Barras

The Dark Side of L4

Semantic puzzles

Evaluation strategy

Example (A tactic that proves True)

Ltac prove_true :=
let H := fresh in assert (H:=I).

But 1let f := prove_true in f; f ~» name clash!
(prove_true; prove_true is OK)

Both tactics work with:

Ltac prove_true :=

(let H := fresh in assert (H:=I));idtac.
Ltac prove_true _ :=
let H := fresh in assert (H:=I)).

B. Barras

The Dark Side of L4

Semantic puzzles

Mixing tactics and expressions

A tactic cannot both transform the goal and return a value.

Example (A robust intro tactic)

let H := intro in ...
more elegant than
let H := fresh in intro H;
Fixes:
@ CPS: 1tac myintro :=
fun k = let H := fresh in intro H; k H

@ ugly hacks (encoding result within the goal)

B. Barras

The Dark Side of L4

Semantic puzzles

fail and || is not for error handling

Example (Applying transitivity with helpful error message)

Ltac trans :=
match goal with
[H1:_=?x, H2:?x=_ |- _] =>
constr: (eq_trans H1 H2) ||
fail 1 "anomaly: ill-typed transitivity"
end.

Always fails... (Value is a term. Expected a tactic.)

B. Barras

The Dark Side of L4

Semantic puzzles

Extendability

@ LCF tactics can be extended by arbitrary ML code
@ Ltac accepts only macros

B. Barras

The Dark Side of L4

Semantic puzzles Ly Semantics
f

Semantics

Expressions and tactics

E == x|Xxe|ejey|fresh|T |tac | matchewithp; = e;end
tac = idtac |fail | ej|lex | e1;e2|... (i.e. all LCF tactics)

Values

| A

y 1= TRM(T) | FUN(p,x,E) | TAC(p, tac) | SGL(goal®)

| A

Two semantics
o ValZ.(E) (evaluation as an argument: tactics delayed)

o Evall.(E) (head evaluation: tactics applied to goal)

4

B. Barras

The Dark Side of L4

L Semantics

Evaluation of expressions

A core:
@ Val?(x) = p(x)
@ Val?(Ax.e) = FUN(p, x,e)

o Valfy(e; e2) = Val’, =) () it valf(e)) = FUN(//, x,)

NB: dynamic linking of term variables
let £ _ := constr:x in

clear x; intro x; let g := f£() in apply g

B. Barras

The Dark Side of L4

. Semantics

Evaluation of expressions

Terms and tactics:
@ Val?(T) = TRM(p(T)) (term typed in G)
@ Val?(fresh) = TRM(x) (x & G)
@ Vall,(tac) = TAC(p, tac)

o Val??(e;) if lazy

Evall;? (e;) otherwise

@ Val?.(match e withp; = ¢;end) = { .
where i,o s.t. ValZ,(e) = TRM(o(p;))

B. Barras

The Dark Side of L4

C rac S€mantics

Evaluation of expressions

Head evaluation:

SGL([rac)” G) ifVal?(E) = TAC(p/, tac)
4 — G
° Evalg(£) = {Valg(E) otherwise
Execution of tactics:
(*] [el;ez]"’ = then [el]p [e‘z]p
@ [e1]|ez]? = orelse [e1]” [er]”
@ [apply T]? = apply p(T)
Toplevel evaluation:
o [E’(G)=g ifEval,(E) = SGL(g)

B. Barras

The Dark Side of L4

L Semantics

Example

Proving True twice:

@ let £ := let H := fresh in assert (H:=I) in
£f; £
Semantics:

fun g -> let f = let h = fresh g in
fun g -> assert (h,I) g in
then £ f g

We’'d rather have:

fun g —> let £ g = let h = fresh g in
assert (h,I) g in
then £ £ g

B. Barras

The Dark Side of L4

Summary of issues

@ Error handling
@ Executing a tactic and returning a result
@ Controlling when a tactic is executed

B. Barras

The Dark Side of L4

Error handling

Promote to the expression level:
o fail, ||, first
@ idtac

B. Barras

The Dark Side of L4

Tactics with an output

Several choices:

@ cf Arnaud Spiwack’s new proof engine (=)
type +’a tactic = goal list -> '/
It's a (state) monad

@ Subgoals as threads:
type +’a tactic = goal list -> (’a % goal) list
Tactics: side-effect on a local variable (goal)
(Shared memory: evars)

a x goal list

B. Barras

The Dark Side of L4

Subgoals = Threads

case (l:1list); intros;
[tac
| fun x 1’ => tac’ 1.

@ Separation of logical and naming aspects of intro.
@ Implementation of a non-logical stack of arguments.

B. Barras

The Dark Side of L4

Now, executing tactics in argument position makes sense. So
we need a way to freeze execution of tactics:

let H := intro in
VS
let H := ’"intro in

(We also need a syntax to force the execution)

B. Barras

The Dark Side of L4

Conclusions

@ L has surprising (though simple) semantics
@ Dichotomy LCF/L,,. awkward

@ Control of execution returned to the user
@ Tactics with a result are flexible
@ New paradigm for passing non-logical arguments

B. Barras

The Dark Side of L4

	Why Ltac?
	Semantic puzzles
	Ltac Semantics
	Ideas

