
Review on Coq development

Hugo Herbelin, Pierre Letouzey, Matthieu Sozeau

(for the Coq development team)

Coq Workshop 2013

22 July 2013

1

Coq releases

Coq 8.4 out since August 2012; currently patch level release is 8.4pl2

Coq 8.5 beta estimated for next winter, in agreement with the usual 2 years release time
lapse

2

Towards Coq V8.5: main ongoing changes

- Second phase of the new proof engine (A. Spiwack):

- providing multi-success (so that apply H; eauto can backtrack on solutions of the
�rst branch which are incompatible with the second branch)

- deep backtracking (e.g. (apply H1 + apply H2); apply H3 which behaves like
(apply H1; apply H3) || (apply H2; apply H3))

- multi-goal application (all:)

- a refine supporting setting dependent existential variables as goals

- new tacticals (e.g. once)

- Full universe polymorphism (M. Sozeau)

- Evaluation of Coq programs via native compilation to OCaml (M. Dénès)

- New support for asynchronous evaluation of commands, as part of the Paral-ITP ANR
project (E. Tassi)

3

Towards Coq V8.5: main ongoing changes (continued)

- CoqIDE improvements

- new layout, using gtksourceview (P. Boutillier)

- searching, more informative coloring, semantical auto-completion (P. Boutillier, P.-M. Pé-
drot, A. Spiwack)

- robustness and better responsiveness thanks to replacement of OCaml threads by
events, callback and cps-style (P. Letouzey, P.-M. Pédrot)

- an XML-based communication (P. Boutillier, P.-M. Pédrot)

4

Towards Coq V8.5: main ongoing changes (continued)

- E�ciency, robustness

- native representation of record projections, leading to signi�cant improvement in e�-
ciency (M. Sozeau)

- OCaml code made more modular, private OCaml libraries made more uniform (P. Letouzey,
P.-M. Pédrot)

- more robust management of exceptions (P. Letouzey, P.-M. Pédrot)

- modules: avoid some duplication in leading to smaller vo �les (-30% on the stdlib)
(P. Letouzey)

- lazy load of opaques terms: revised implementation, cleaner code, smaller vo �les (-20%
on the stdlib)

- better hash-consing (P. Letouzey, P.-M. Pédrot)

5

Towards Coq V8.5: other changes

- Guard condition: make it propagate uniformly through β-redexes blocked by a match

(P. Boutillier)

- Type inference: various improvements of the uni�cation algorithm: better error reporting,
better uni�cation in the presence of match, management of universes (P. Boutillier,
H. Herbelin, M. Sozeau)

- Reduction strategies: new strategy cbn for evaluation with �xpoint refolding (P. Boutil-
lier)

- Tactics: destruct/induction extended into �small inversion� (P. Boutillier and T.
Braibant)

- Tactics: new introduction pattern [= ...] for injection/discriminate on the �y
(Gonthier-inspired)

- Tactics: Rewriting with strategies, rewrite_strat, subsuming autorewrite (M. Sozeau)

- and various other miscellaneous improvements in tactics

6

Towards Coq V8.5: work in progress liable to be eventually integrated

- Native persistent arrays, native int31 (e.g. for e�cient veri�cation of SAT traces)
(B. Grégoire, M. Dénès)

- Experimental implementation of native higher inductive types (B. Barras) under evalu-
ation

7

Coq for Homotopy Type Theory

- Foundational results: Homotopy Theory suggests a new interpretation of type theory,
beside the proof-as-program, type-as-formula correspondence:

Type = Space
Equality proof = Path

In particular, Homotopy Theory justi�es the non-provability of the Uniqueness of Identity
Proofs (∀xy :A∀pq : (x =A y) [p =x=Ay q]): equality is relevant since there might be
more than one path up to deformation between two points!

- The key new concepts brought by Homotopy Theory: univalence and higher inductive

types, leading to Homotopy Type Theory (HoTT)

- Univalence: Equality of types reduces to bijective correspondence (�univ. extensionality�)

- Higher Inductive Types

- Coq used as a foundation for developing results of HoTT: see Homotopy Type Theory

http://homotopytypetheory.org/book and https://github.com/HoTT

8

Coq for Homotopy Type Theory (continued)

- Homotopy Type Theory provides with new insights and directions for research regarding
the status of equality in Martin-Löf's type theory (and hence Coq):

- rethinking equality over A as de�ned by induction on the type structure of A

- rethinking rewriting of t by u in P (t) as an operation de�ned by induction on P

↪→ provides computational content to functional extensionality and univalence

- More generally, Homotopy Type Theory suggests to provide

- explicit access to a strict (i.e. proof-irrelevant) extensional generalization of de�nitional
equality ≡ext (�extensional� as in Martin-Löf's Extensional Type Theory)

- cohabiting together with a fully extensional relevant equality =ext (�extensional� as in
�function/universe extensionality�)

- to reconsider the conversion rule as a purely technological issue, supporting any arbitrary
subset of ≡ext that is provably decidable, hence mechanizable; a prototypical example
of this approach is P.-Y. Strub's CoqMT

9

Other long-term perspectives

- Type-based guard (B. Barras, J. Sacchini)

- Support for K (in Set), inductive-recursive types, a revision of the hierarchy of sorts
(M. Sozeau)

- An evolution of Ltac? Towards a typed or dependently-typed, compiled tactic language,
see Cybele (G. Claret, L. D. C. Gonzalez Huesca, Y. Régis-Gianas), Mtac (B. Ziliani et
al), VeriML (Z. Shao, A. Stampoulis), ...

10

Community

- Coq-Club: more than 1000 mail addresses subscribed

- Coq-bugs

- The Cocorico wiki

- The coq irc channel

- Summer school (OPLSS, INRIA, Asian's), classes

- Coq'Art, Software Foundations, Certi�ed Programming with Dependent Types, ...

- Coq workshop

- New: The ACM SIGPLAN Programming Language Software 2013 Award

- New: Towards a Coq consortium

11

