Type-Based Methods for Termination and Productivity in Coq

Bruno Barras1 Jorge Luis Sacchini2

1INRIA Saclay & LIX
2Carnegie Mellon University – Qatar

July 22, 2013
Coq

- Coq is a **total** dependently-typed programming language
- **Totality** means:
 - Functions must be defined in their entire domain (no partial functions)
 - Recursive functions must be **terminating**
 - Co-recursive functions must be **productive**
- Non-terminations leads to inconsistencies
 - Ex: \((\text{let } f \ x = f \ x \text{ in } f \ 0) : 0 = 1\)
- Totality ensures logical consistency and decidability of type checking
Coq

- Termination and productivity are undecidable problems
- Approximate the answer
- Coq imposes **syntactic restrictions** on (co-)recursive definitions
- For termination: guarded-by-destructors
- Recursive calls performed only on **structurally smaller terms**

\[
\Gamma(f : I \rightarrow T) \vdash M : I \rightarrow T
\]

\[
\frac{\Gamma \vdash (\text{fix } f : I \rightarrow T := M) : I \rightarrow T}{\Gamma \vdash (\text{fix } f : I \rightarrow T := M) : I \rightarrow T}
\]
Coq

- Termination and productivity are undecidable problems
- Approximate the answer
- Coq imposes *syntactic restrictions* on (co-)recursive definitions
- For termination: guarded-by-destructors
- Recursive calls performed only on *structurally smaller terms*

\[
\Gamma(f : I \rightarrow T) \vdash M : I \rightarrow T \\
\Gamma \vdash (\text{fix } f : I \rightarrow T := M) : I \rightarrow T
\]

- The predicate \(G(f, M) \) checks that all recursive calls of \(f \) in \(M \) are guarded by destructors
Termination and productivity are undecidable problems
Approximate the answer
Coq imposes syntactic restrictions on (co-)recursive definitions
For termination: guarded-by-destructors
Recursive calls performed only on structurally smaller terms

\[
\begin{align*}
\Gamma(f : I \to T) & \vdash M : I \to T & G(f, M) \\
\Gamma & \vdash (\text{fix } f : I \to T := M) : I \to T
\end{align*}
\]

The predicate \(G(f, M)\) checks that all recursive calls of \(f\) in \(M\) are guarded by destructors
Actually, the guard condition is checked on a normal form of the body

\[
\begin{align*}
\Gamma(f : I \to T) & \vdash M : I \to T & M \rightarrow^* N & G(f, N) \\
\Gamma & \vdash (\text{fix } f : I \to T := M) : I \to T
\end{align*}
\]
Termination in Coq

- Typical example:

```coq
fix half : nat → nat := λx. case x of
  | O ⇒ O
  | S O ⇒ O
  | S (S p) ⇒ S(half p)
```

Recursive call is **guarded**. The recursive argument is smaller.

- The initial implementation of G (due to Eduardo Giménez around 1994) has been extended over the years to allow more functions.

- Most recent extension: commutative cuts (due to Pierre Boutillier).
Termination in Coq

- Typical example:

```coq
fix half : nat → nat := λx. case x of
  | O ⇒ O
  | S O ⇒ O
  | S (S p) ⇒ S(half p)
```

Recursive call is **guarded**. The recursive argument is smaller.

- The initial implementation of \mathcal{G} (due to Eduardo Giménez around 1994) has been extended over the years to allow more functions.

- Most recent extension: commutative cuts (due to Pierre Boutillier).
Termination in Coq

Subterm relation

Subtraction:

\[
\text{fix } \textit{minus} : \textit{nat} \rightarrow \textit{nat} \rightarrow \textit{nat} := \lambda xy. \ \text{case } x, y \text{ of} \\
| O, _ \Rightarrow x \\
| S x_1, O \Rightarrow S x_1 \\
| S x_1, S y_1 \Rightarrow \textit{minus } x_1 \ y_1
\]
Termination in Coq

Subterm relation

Subtraction:

\[
\text{fix } \text{minus} : \text{nat} \rightarrow \text{nat} \rightarrow \text{nat} := \lambda xy. \text{case } x, y \text{ of} \\
| \text{O, } _{-} \Rightarrow x \\
| S x_1, \text{O} \Rightarrow S x_1 \\
| S x_1, S y_1 \Rightarrow \text{minus } x_1 y_1
\]

\(x_1 \prec x\) \((x_1\text{ is a strict subterm of } S x_1 \equiv x)\)
Termination in Coq

Subterm relation

Subtraction:

\[
\text{fix } \text{minus} : \text{nat} \to \text{nat} \to \text{nat} := \lambda xy. \text{case } x, y \text{ of }
\]
\[
| \ O, _ \Rightarrow x \n| \ S \ x_1, O \Rightarrow S \ x_1 \n| \ S \ x_1, S \ y_1 \Rightarrow \text{minus} \ x_1 \ y_1
\]

\(x_1 \prec x\) \((x_1 \text{ is a strict subterm of } S \ x_1 \equiv x)\)

Division:

\[
\text{div} \ x \ y = \left\lfloor \frac{x}{y+1} \right\rfloor
\]

\[
\text{fix } \text{div} : \text{nat} \to \text{nat} \to \text{nat} := \lambda xy. \text{case } x \text{ of }
\]
\[
| \ O \Rightarrow O \n| \ S \ x_1 \Rightarrow S(\text{div}(\text{minus} \ x_1 \ y) \ y)
\]
Termination in Coq

Subterm relation

Subtraction:

```
fix minus : nat → nat → nat := λxy. case x, y of
  | O, _ ⇒ x
  | S x₁, O ⇒ S x₁
  | S x₁, S y₁ ⇒ minus x₁ y₁
```

\[x₁ \prec x \text{ (} x₁ \text{ is a strict subterm of } S x₁ ≡ x \text{)} \]

Division: \[\text{div } x \; y = \left\lfloor \frac{x}{y+1} \right\rfloor \]

```
fix div : nat → nat → nat := λxy. case x of
  | O ⇒ O
  | S x₁ ⇒ S(div(minus x₁ y) y)
```

\[\text{minus } x₁ \; y \preceq x₁ \prec S x₁ ≡ x \]
Termination in Coq

Subterm relation

Subtraction:

\[\text{fix } \text{minus} : \mathbb{N} \to \mathbb{N} \to \mathbb{N} := \lambda x, y. \text{case } x, y \text{ of}\]
\[| \text{O, } - \Rightarrow x \]
\[| \text{S } x_1, \text{O} \Rightarrow \text{S } x_1 \]
\[| \text{S } x_1, \text{S } y_1 \Rightarrow \text{minus } x_1 y_1 \]

Division: \[\text{div } x y = \left\lfloor \frac{x}{y+1} \right\rfloor\]

\[\text{fix } \text{div} : \mathbb{N} \to \mathbb{N} \to \mathbb{N} := \lambda x, y. \text{case } x \text{ of}\]
\[| \text{O} \Rightarrow \text{O} \]
\[| \text{S } x_1 \Rightarrow \text{S}(\text{div}(\text{minus } x_1 y) y) \]
Termination in Coq

Subterm relation

Subtraction:

\[
\text{fix } \text{minus} : \text{n}at \to \text{n}at \to \text{n}at \ := \ \lambda x, y. \ \text{case } x, y \ \text{of}
\]
\[
| \ O, _ \ \Rightarrow \ O \\
| \ S x_1, O \ \Rightarrow \ S x_1 \\
| \ S x_1, S y_1 \ \Rightarrow \ \text{minus } x_1 \ y_1
\]

\(x_1 \prec x (x_1 \text{ is a strict subterm of } S x_1 \equiv x)\)

Division: \(\text{div } x \ y = \left\lfloor \frac{x}{y+1} \right\rfloor\)

\[
\text{fix } \text{div} : \text{n}at \to \text{n}at \to \text{n}at \ := \ \lambda x, y. \ \text{case } x \ \text{of}
\]
\[
| \ O \ \Rightarrow \ O \\
| \ S x_1 \ \Rightarrow \ S(\text{div } (\text{minus } x_1 \ y) \ y)
\]
Termination in Coq

Subterm relation

Subtraction:

\[\text{fix } \text{minus} : \text{nat} \rightarrow \text{nat} \rightarrow \text{nat} := \lambda xy. \text{case } x, y \text{ of} \]
\[\quad | \quad O, _ \Rightarrow O \]
\[\quad | \quad S x_1, O \Rightarrow S x_1 \]
\[\quad | \quad S x_1, S y_1 \Rightarrow \text{minus} x_1 y_1 \]

\(x_1 \prec x \) (\(x_1 \) is a strict subterm of \(S x_1 \equiv x \))

Division: \(\text{div } x \ y = \left\lceil \frac{x}{y+1} \right\rceil \)

\[\text{fix } \text{div} : \text{nat} \rightarrow \text{nat} \rightarrow \text{nat} := \lambda xy. \text{case } x \text{ of} \]
\[\quad | \quad O \Rightarrow O \]
\[\quad | \quad S x_1 \Rightarrow S(\text{div} (\text{minus} x_1 y) y) \]

\(\text{minus } x_1 y \not\prec x_1 \prec S x_1 \equiv x \)
Inductive rose(A) : Type := node : A → list (rose A) → rose A

rmap := λf : A → B. fix rmap : rose A → rose B :=
λt. case t of
 node x ts ⇒ node (f x) (map rmap ts)

map := λf : A → B. fix map : list A → list B :=
λl. case l of
 nil ⇒ nil
 nil ⇒ nil
 cons x xs ⇒ cons (f x) (map xs)
Inductive rose(A) : Type := node : A → list (rose A) → rose A

rmap := λf : A → B. fix rmap : rose A → rose B := λt. case t of
 node x ts ⇒ node (f x) (map rmap ts)

map := λf : A → B. fix map : list A → list B := λl. case l of
 nil ⇒ nil
 cons x xs ⇒ cons (f x) (map xs)
Inductive rose(A) : Type := node : A → list (rose A) → rose A

rmap := λf : A → B. fix rmap : rose A → rose B :=
 λt. case t of
 node x ts ⇒ node (f x) (map rmap ts)

map := fix map : (A → B) → list A → list B :=
 λf l. case l of
 nil ⇒ nil
 cons x xs ⇒ cons (f x) (map f xs)
Inductive rose(A) : Type := node : A → list (rose A) → rose A

rmap := λf : A → B. fix rmap : rose A → rose B :=
 λt. case t of
 node x ts ⇒ node (f x) (map rmap ts)

map := fix map : (A → B) → list A → list B :=
 λf l. case l of
 nil ⇒ nil
 cons x xs ⇒ cons (f x) (map f xs)
Syntactic criteria

Limitations

- Works on syntax: small changes in code can make functions ill-typed
- Not compositional
- Difficult to understand for users
 - Many questions about termination in the Coq list
 - Error messages not informative
- Difficult to implement: termination checking is the most delicate part of Coq's kernel
- Inefficient: guard condition is checked on the normal form of fixpoints bodies
- Difficult to study
 - Little documentation
 - Complicated to even define
Termination in Coq

- Many ways to get around the guard condition:
 - Adding extra argument to act as measure of termination
 - Wellfounded recursion
 - Ad-hoc predicate (Bove)
 - Tool support (Function, Program)
- But this complicates function definition
- May affect efficiency
Termination using sized types

- Long history: Haskell [Pareto et al.], \(\lambda^\hat{\cdot} \) [Joao Frade et al.], \(F_\omega^\hat{\cdot} \) [Abel], \(\text{CIC}^\hat{\cdot} \) [Barthe et al.], CC+rewriting [Blanqui et al.] …
Termination using sized types

- Long history: Haskell [Pareto et al.], \(\lambda^\wedge \) [Joao Frade et al.], \(F_\omega^\wedge \) [Abel], CIC\(^\wedge \) [Barthe et al.], CC+rewriting [Blanqui et al.] ...

- Basic idea: user-defined datatypes are decorated with size information

\[
\text{nat} ::= O : \text{nat} \mid S : \text{nat} \rightarrow \text{nat}
\]

Intuitive meaning: \([\text{nat}] = \{O, S \ O, S(S \ O), \ldots\}\)
Termination using sized types

- Basic idea: user-defined datatypes are decorated with size information

\[
nat ::= O : \text{nat} \mid S : \text{nat} \to \text{nat}
\]

Intuitive meaning: \([\text{nat}] = \{O, S \ O, S(\ S\ O), \ldots\}\)

- Sized types are approximations

\[
nat{\langle s \rangle}
\]

Intuitive meaning: \([\text{nat} \langle s \rangle] = \{O, S \ O, \ldots, S(\ldots(S\ O)\ldots)\}_{s-1}\)
Termination using sized types

- Size annotations keep track of the size of elements

$$s ::= \tau \mid \hat{s} \mid \infty$$
Termination using sized types

- Size annotations keep track of the size of elements.

\[s ::= \nu \mid \hat{s} \mid \infty \]

\[\hat{\infty} = \infty \]
Termination using sized types

- Size annotations keep track of the size of elements

\[s ::= \nu \mid \hat{s} \mid \infty \]

\[\Gamma \vdash O : \text{nat} \quad \Gamma \vdash M : \text{nat} \]

\[\Gamma \vdash S M : \text{nat} \]
Termination using sized types

- Size annotations keep track of the size of elements

\[s ::= n \mid \hat{s} \mid \infty \]

\[\Gamma \vdash O : \text{nat}(\hat{s}) \]
\[\Gamma \vdash M : \text{nat}(s) \]
\[\Gamma \vdash S M : \text{nat}(\hat{s}) \]
Termination using sized types

- Size annotations keep track of the size of elements

\[s ::= \nu \mid \hat{s} \mid \infty \]

\[\Gamma \vdash O : \text{nat}\langle \hat{s} \rangle \]
\[\Gamma \vdash M : \text{nat}\langle s \rangle \]
\[\Gamma \vdash S M : \text{nat}\langle \hat{s} \rangle \]
Termination using sized types

- Size annotations keep track of the size of elements

\[s ::= \nu \mid \hat{s} \mid \infty \]

\[
\Gamma \vdash O : \text{nat}\langle \hat{s} \rangle \\
\Gamma \vdash M : \text{nat}\langle s \rangle \\
\Gamma \vdash S M : \text{nat}\langle \hat{s} \rangle
\]

- Substage relation

\[
s \sqsubseteq \hat{s} \quad s \sqsubseteq \infty
\]

defines a subtype relation

\[
s \sqsubseteq r \\
\text{nat}\langle s \rangle \leq \text{nat}\langle r \rangle
\]
Termination using sized types

Fixpoint rule

Recursive functions are defined on approximations of datatypes:

\[\Gamma(f : I \to T) \vdash M : I \to T \]
\[\Gamma \vdash (\text{fix } f : I \to T := M) : I \to T \]
Termination using sized types

Fixpoint rule

Recursive functions are defined on approximations of datatypes:

\[
\frac{\Gamma(f : I \langle i \rangle \rightarrow T) \vdash M : I \langle \hat{i} \rangle \rightarrow T}{\Gamma \vdash (\text{fix } f : I \rightarrow T := M) : I \langle s \rangle \rightarrow T} \quad i \text{ fresh}
\]

- Recursive calls on terms of smaller size
Recursive functions are defined on approximations of datatypes:

\[\Gamma(f : \langle i \rangle \rightarrow T) \vdash M : \langle \hat{i} \rangle \rightarrow T \]
\[\Gamma \vdash (\text{fix } f : \langle i \rangle \rightarrow T := M) : \langle s \rangle \rightarrow T \]

- Recursive calls on terms of smaller size
- Size-preserving functions: return type \(T \) can depend on \(i \)
Termination using sized types

Fixpoint rule

Recursive functions are defined on approximations of datatypes:

\[\Gamma(f : I \langle \nu \rangle \rightarrow T) \vdash M : I \langle \hat{\nu} \rangle \rightarrow T\]

\[\Gamma \vdash (\text{fix } f : I \rightarrow T := M) : I \langle s \rangle \rightarrow T\]

- Recursive calls on terms of smaller size
- Size-preserving functions: return type \(T \) can depend on \(\nu \)
- Non-structural recursion
Example: quicksort

Non-structural recursion

\[
\text{filter} \equiv \ldots : \Pi A. (A \rightarrow \text{bool}) \rightarrow \text{list} \quad A \rightarrow \text{list} \quad A \times \text{list} \quad A
\]

\[
(++) \equiv \ldots : \Pi A. \text{list} \quad A \rightarrow \text{list} \quad A \rightarrow \text{list} \quad A
\]
Example: quicksort
Non-structural recursion

\[
\text{filter} \equiv \ldots : \forall A. (A \rightarrow \text{bool}) \rightarrow \text{list } A \rightarrow \text{list } A \times \text{list } A
\]

\[
(\++) \equiv \ldots : \forall A. \text{list } A \rightarrow \text{list } A \rightarrow \text{list } A
\]

fix qsort : list A \rightarrow list A :=

\[
\lambda x : \text{list } A. \text{ case } x \text{ of }
\]

\[
| \text{nil} \Rightarrow \text{nil} \\
| \text{cons } h \ t \Rightarrow \text{let } (s, g) = \text{filter } (< h) \ t \text{ in } (\text{qsort } s) \ldots (\text{qsort } g) \ldots) \\
\]
Example: quicksort
Non-structural recursion

\[
\text{filter} \equiv \ldots : \prod A. (A \to \text{bool}) \to \text{list}(s) A \to \text{list}(s) A \times \text{list}(s) A
\]

\[
(++) \equiv \ldots : \prod A. \text{list}(s) A \to \text{list}(r) A \to \text{list}(\infty) A
\]

\[
\text{fix qsort} : \text{list} A \to \text{list} A := \\
\lambda x : \text{list} A. \text{case } x \text{ of} \\
\quad | \text{nil} \Rightarrow \text{nil} \\
\quad | \text{cons } h t \Rightarrow \text{let } (s, g) = \text{filter } (< h) t \text{ in} \\
\quad \quad (\text{qsort } s) ++ (\text{cons } h (\text{qsort } g))
\]
Example: quicksort
Non-structural recursion

\[
\text{filter} \equiv \ldots : \Pi A. (A \to \text{bool}) \to \text{list}(s) A \to \text{list}(s) A \times \text{list}(s) A
\]

\[
(++) \equiv \ldots : \Pi A. \text{list}(s) A \to \text{list}(r) A \to \text{list}(\infty) A
\]

\[
\text{fix qsort : list } A \to \text{list } A :=
\]

\[
\lambda x : \text{list } A. \ \text{case } x^{\text{list}(\hat{\imath})} \ \text{of}
\]

\[
| \text{nil} \Rightarrow \text{nil}
\]

\[
| \text{cons } h \text{ t}^{\text{list}(\hat{\imath})} \Rightarrow \text{let } (s, g) = \text{filter } (< h) t^{\text{list}(\hat{\imath})} \ \text{in}
\]

\[
(q\text{sort } s^{\text{list}(\hat{\imath})}) ++ (\text{cons } h \ (q\text{sort } g^{\text{list}(\hat{\imath})}))
\]

Bruno Barras, Jorge Luis Sacchini
Example: quicksort
Non-structural recursion

\[
\text{filter} \equiv \ldots : \Pi A. (A \rightarrow \text{bool}) \rightarrow \text{list}\langle s\rangle A \rightarrow \text{list}\langle s\rangle A \times \text{list}\langle s\rangle A \\
(++) \equiv \ldots : \Pi A. \text{list}\langle s\rangle A \rightarrow \text{list}\langle r\rangle A \rightarrow \text{list}\langle \infty\rangle A
\]

fix qsort : list A \rightarrow list A :=
\lambda x : \text{list} A. \text{case } x^{\text{list}\langle \hat{i}\rangle} \text{ of}
| \text{nil} \Rightarrow \text{nil}
| \text{cons } h t^{\text{list}\langle i\rangle} \Rightarrow \text{let } (s, g) = \text{filter } (< h) t^{\text{list}\langle i\rangle} \text{ in}
\quad (\text{qsort } s^{\text{list}\langle i\rangle}) + + (\text{cons } h (\text{qsort } g^{\text{list}\langle i\rangle})))
:\Pi A. \text{list}\langle s\rangle A \rightarrow \text{list}\langle \infty\rangle A
Type-based termination

- Handle higher-order data

\[\text{node} : \Pi A. A \rightarrow \text{list}(\infty)(\text{rose}(s) A) \rightarrow \text{rose}(\hat{s}) A \]

- Advantages over syntactic criteria
 - Expressiveness
 - Compositional
 - Easier to understand (specially for ill-typed terms)
 - Easier to implement (as shown in prototype implementations)
 - Easier to study (semantically intuitive)
 - Not intrusive for the user (minimal annotations required)

- Good candidate to replace syntactic criterion in Coq
Coinductive Types

- Coinductive types are used to model and reason about infinite data and infinite processes.
- Coinductive types can be seen as the dual of inductive types.

<table>
<thead>
<tr>
<th>Inductive types</th>
<th>Coinductive types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induction</td>
<td>Coinduction</td>
</tr>
<tr>
<td>Recursive functions</td>
<td>Corecursive functions</td>
</tr>
<tr>
<td>consume data</td>
<td>produce data</td>
</tr>
</tbody>
</table>

Bruno Barras, Jorge Luis Sacchini
Coinductive Types in Coq

- Streams:

\[
\text{CoInductive } \text{stream } A := \text{scons : } A \rightarrow \text{stream } A \rightarrow \text{stream } A
\]
Coinductive Types in Coq

- Stream

CoInductive stream A := scons : A \rightarrow stream A \rightarrow stream A
Coinductive Types in Coq

- Streams:

 \textbf{CoInductive} \text{ stream } A := \text{scons} : A \rightarrow \text{stream } A \rightarrow \text{stream } A

- Corecursive functions produce streams:

 zeroes := cofix \ Z := \text{scons}(0, \ Z)

 zeroes produce the stream:

 \text{scons}(0, \text{scons}(0, \text{scons}(0, \ldots))))
Coinductive types

<table>
<thead>
<tr>
<th>Inductive types</th>
<th>Coinductive types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termination</td>
<td>Productivity</td>
</tr>
</tbody>
</table>

- In proof assistants, termination of recursive functions is essential to ensure logical consistency and decidability of type checking.
- For corecursive functions, the dual condition to termination is productivity.
- In the case of streams, productivity means that we can compute any element of the stream in finite time:

\[
\text{cofix } Z_1 := \text{scons}(0, Z_1) \\
\text{cofix } Z_2 := \text{scons}(0, \text{tail } Z_2)
\]
Coinductive types

<table>
<thead>
<tr>
<th>Inductive types</th>
<th>Coinductive types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termination</td>
<td>Productivity</td>
</tr>
</tbody>
</table>

- In proof assistants, termination of recursive functions is essential to ensure logical consistency and decidability of type checking.
- For corecursive functions, the dual condition to termination is productivity.
- In the case of streams, productivity means that we can compute any element of the stream in finite time:

 \[
 \text{cofix } Z_1 := \text{scons}(0, Z_1) \\
 \text{cofix } Z_2 := \text{scons}(0, \text{tail } Z_2)
 \]
Coinductive types

<table>
<thead>
<tr>
<th>Inductive types</th>
<th>Coinductive types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termination</td>
<td>Productivity</td>
</tr>
</tbody>
</table>

- In proof assistants, termination of recursive functions is essential to ensure logical consistency and decidability of type checking.
- For corecursive functions, the dual condition to termination is productivity.
- In the case of streams, productivity means that we can compute any element of the stream in finite time:

 \[
 \text{cofix } Z_1 := \text{scons}(0, Z_1) \quad \checkmark \\
 \text{cofix } Z_2 := \text{scons}(0, \text{tail } Z_2) \quad \times
 \]
Coinductive types

<table>
<thead>
<tr>
<th>Inductive types</th>
<th>Coinductive types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termination</td>
<td>Productivity</td>
</tr>
</tbody>
</table>

- In proof assistants, termination of recursive functions is essential to ensure logical consistency and decidability of type checking.
- For corecursive functions, the dual condition to termination is **productivity**.
- In the case of streams, productivity means that we can compute any element of the stream in finite time:

\[
\text{cofix } Z_1 := \text{scons}(0, Z_1) \\
\text{cofix } Z_2 := \text{scons}(0, \text{tail } Z_2)
\]

(tail \(Z_2\) loops)

Bruno Barras, Jorge Luis Sacchini
Syntactic-Based Methods for Productivity

<table>
<thead>
<tr>
<th>Inductive types</th>
<th>Coinductive types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termination</td>
<td>Productivity</td>
</tr>
<tr>
<td>Guarded-by-Destructor</td>
<td>Guarded-by-Constructor</td>
</tr>
</tbody>
</table>

- Guarded-by-constructor: every corecursive call is performed directly under a constructor
- Same limitations as in the inductive case
Syntactic-Based Methods for Productivity

<table>
<thead>
<tr>
<th>Inductive types</th>
<th>Coinductive types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termination</td>
<td>Productivity</td>
</tr>
<tr>
<td>Guarded-by-Destructor</td>
<td>Guarded-by-Constructor</td>
</tr>
</tbody>
</table>

- Guarded-by-constructor: every corecursive call is performed directly under a constructor
- Same limitations as in the inductive case

\[
nats := \text{cofix } nats := \lambda n. \text{scons}(n, nats(1 + n))
\]
Syntactic-Based Methods for Productivity

<table>
<thead>
<tr>
<th>Inductive types</th>
<th>Coinductive types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termination</td>
<td>Productivity</td>
</tr>
<tr>
<td>Guarded-by-Destructor</td>
<td>Guarded-by-Constructor</td>
</tr>
</tbody>
</table>

- Guarded-by-constructor: every corecursive call is performed directly under a constructor
- Same limitations as in the inductive case

\[
nats := \text{cofix} \quad nats := \lambda n. \text{scons}(n, nats(1 + n))
\]
Syntactic-Based Methods for Productivity

<table>
<thead>
<tr>
<th>Inductive types</th>
<th>Coinductive types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termination</td>
<td>Productivity</td>
</tr>
<tr>
<td>Guarded-by-Destructor</td>
<td>Guarded-by-Constructor</td>
</tr>
</tbody>
</table>

- **Guarded-by-constructor:** every corecursive call is performed directly under a constructor
- **Same limitations as in the inductive case**

```lambda
let nats := cofix in nats := \n. scons(n, nats (1 + n))
```

```lambda
let nats := \n. cofix in nats := scons(n, map (\x. 1+x) nats)
```
Syntactic-Based Methods for Productivity

<table>
<thead>
<tr>
<th>Inductive types</th>
<th>Coinductive types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termination</td>
<td>Productivity</td>
</tr>
<tr>
<td>Guarded-by-Destructor</td>
<td>Guarded-by-Constructor</td>
</tr>
</tbody>
</table>

- **Guarded-by-constructor**: every corecursive call is performed directly under a constructor
- **Same limitations as in the inductive case**

\[
\text{nats} := \cofix \text{nats} := \lambda n. \text{scons}(n, \text{nats} (1 + n)) \quad \checkmark
\]

\[
\text{nats} := \lambda n. \cofix \text{nats} := \text{scons}(n, \text{map } (\lambda x. 1+x) \text{nats})
\]
Syntactic-Based Methods for Productivity

<table>
<thead>
<tr>
<th>Inductive types</th>
<th>Coinductive types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termination</td>
<td>Productivity</td>
</tr>
<tr>
<td>Guarded-by-Destructor</td>
<td>Guarded-by-Constructor</td>
</tr>
</tbody>
</table>

- Guarded-by-constructor: every corecursive call is performed directly under a constructor
- Same limitations as in the inductive case

\[
\text{nats} := \text{cofix nats} := \lambda n. \text{scons}(n, \text{nats} (1 + n)) \quad \checkmark
\]

\[
\text{nats} := \lambda n. \text{cofix nats} := \text{scons}(n, \text{map} (\lambda x. 1+x) \text{nats}) \quad \times
\]
Sized types can be applied to productivity checking as well!
Sized types can be applied to productivity checking as well!

Dual meaning of size annotations on coinductive types

\[
\text{stream}\langle s \rangle A
\]

is the type of streams of which \textit{at least} \(s \) elements can be produced
Sized types can be applied to productivity checking as well!

- Dual meaning of size annotations on coinductive types

\[
\text{stream}\langle s \rangle \, A
\]

is the type of streams of which \textit{at least} \(s \) elements can be produced.

- Size annotations are contra-variant:

\[
\frac{r \sqsubseteq s}{\text{stream}\langle s \rangle \, T \leq \text{stream}\langle r \rangle \, T}
\]
Sized types can be applied to productivity checking as well!

- Dual meaning of size annotations on coinductive types
 \[
 \text{stream}\langle s \rangle \ A
 \]
 is the type of streams of which \textbf{at least} \(s \) elements can be produced

- Size annotations are contra-variant:
 \[
 \begin{align*}
 r \sqsubseteq s & \quad \Rightarrow \quad \text{stream}\langle s \rangle \ T \leq \text{stream}\langle r \rangle \ T \\
 s \sqsubseteq r & \quad \Rightarrow \quad \text{list}\langle s \rangle \ T \leq \text{list}\langle r \rangle \ T
 \end{align*}
 \]
Type-Based Methods for Productivity

- Typing rules are similar to the inductive case
- Rules for constructors:

\[\Gamma \vdash M : A \quad \Gamma \vdash N : \text{stream} \langle s \rangle A \]
\[\Gamma \vdash \text{scons}(M, N) : \text{stream} \langle \hat{s} \rangle A \]

- Cofixpoint definition is also similar to fixpoint definition:

\[\Gamma(f : \text{stream} \langle i \rangle A) \vdash M : \text{stream} \langle \hat{i} \rangle A \]
\[\Gamma \vdash \text{cofix } f := M : \text{stream} \langle s \rangle A \quad \hat{i} \text{ fresh} \]
Type-Based Methods for Productivity

- Typing rules are similar to the inductive case
- Rules for constructors:

\[
\Gamma \vdash M : A \quad \Gamma \vdash N : \text{stream}\langle s \rangle A \\
\Gamma \vdash \text{scons}(M, N) : \text{stream}\langle \hat{s} \rangle A \\
\Gamma \vdash M : A \quad \Gamma \vdash N : \text{list}\langle s \rangle A \\
\Gamma \vdash \text{cons}(M, N) : \text{list}\langle \hat{s} \rangle A
\]

- Cofixpoint definition is also similar to fixpoint definition:

\[
\Gamma(f : \text{stream}\langle i \rangle A) \vdash M : \text{stream}\langle \hat{i} \rangle A \\
\Gamma \vdash \text{cofix } f := M : \text{stream}\langle s \rangle A \\
\hat{i} \text{ fresh}
\]

Bruno Barras, Jorge Luis Sacchini
Type-Based Methods for Productivity

- Typing rules are similar to the inductive case
- Rules for constructors:

\[
\begin{align*}
\Gamma \vdash M : A & \quad \Gamma \vdash N : \text{stream}\langle s \rangle A \\
\Gamma \vdash \text{scons}(M, N) : \text{stream}\langle \hat{s} \rangle A
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash M : A & \quad \Gamma \vdash N : \text{list}\langle s \rangle A \\
\Gamma \vdash \text{cons}(M, N) : \text{list}\langle \hat{s} \rangle A
\end{align*}
\]

- Cofixpoint definition is also similar to fixpoint definition:

\[
\begin{align*}
\Gamma(f : \text{stream}\langle i \rangle A) \vdash M : \text{stream}\langle \hat{i} \rangle A \\
\Gamma \vdash \text{cofix}\ f := M : \text{stream}\langle s \rangle A & \quad i \text{ fresh}
\end{align*}
\]

\[
\begin{align*}
\Gamma(f : \text{list}\langle i \rangle A \rightarrow U) \vdash M : \text{list}\langle \hat{i} \rangle A \rightarrow U \\
\Gamma \vdash \text{fix}\ f := M : \text{list}\langle s \rangle A \rightarrow U & \quad i \text{ fresh}
\end{align*}
\]
Co-recursive definitions

Examples

\[
\begin{align*}
\text{map} : (A \to B) \to \text{stream} & \quad A \to \text{stream} \quad B \\
\text{merge} : \text{stream} \quad \text{nat} \to \text{stream} \quad \text{nat} & \to \text{stream} \quad \text{nat} \\
\text{merge} (1 3 5 \ldots) & (2 4 6 \ldots) = (1 2 3 4 \ldots) \\
\text{ham} := \text{cofix} \quad \text{ham} : \text{stream} \quad \text{nat} := \\
& \quad \text{scons}(1, \text{merge} (\text{map} (\lambda x. 2 \times x) \text{ham} \quad) \\
& \quad \quad (\text{merge} (\text{map} (\lambda x. 3 \times x) \text{ham} \quad) \\
& \quad \quad \quad (\text{map} (\lambda x. 5 \times x) \text{ham} \quad))) \\
\text{ham} = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 8 \ 9 \ 10 \ 12 \ 15 \ldots)
\end{align*}
\]
Co-recursive definitions

Examples

\[
\text{map} : (A \to B) \to \text{stream}\langle s\rangle A \to \text{stream}\langle s\rangle B
\]

\[
\text{merge} : \text{stream}\langle s\rangle \text{nat} \to \text{stream}\langle s\rangle \text{nat} \to \text{stream}\langle s\rangle \text{nat}
\]

\[
\text{merge} \ (1 \ 3 \ 5 \ldots) \ (2 \ 4 \ 6 \ldots) = (1 \ 2 \ 3 \ 4 \ldots)
\]

\[
\text{ham} := \text{cofix} \ \text{ham} : \text{stream} \ \text{nate} :=
\]

\[
\text{scons}(1, \ \text{merge} \ (\text{map} \ (\lambda x. 2 \times x) \ \text{ham})
\]

\[
(\text{merge} \ (\text{map} \ (\lambda x. 3 \times x) \ \text{ham})
\]

\[
(\text{map} \ (\lambda x. 5 \times x) \ \text{ham})))
\]

\[
\text{ham} = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 8 \ 9 \ 10 \ 12 \ 15 \ldots)
\]
Co-recursive definitions

Examples

map : (A → B) → stream<s>A → stream<s>B

merge : stream<s>nat → stream<s>nat → stream<s>nat
merge (1 3 5 . . .) (2 4 6 . . .) = (1 2 3 4 . . .)

ham := cofix ham : stream nat :=
 scons(1, merge (map (λx. 2*x) ham<stream<s>>)
 (merge (map (λx. 3*x) ham<stream<s>>))
 (map (λx. 5*x) ham<stream<s>>)))

ham = (1 2 3 4 5 6 8 9 10 12 15 . . .)
Sized types for coinduction

- Type-based productivity has several advantages over syntactic-based
 - More expressive
 - Compositional
 - Easier to understand (specially for ill-typed terms)
 - Easier to implement (as shown in prototype implementations)
 - Easier to study (semantically intuitive)
 - Not intrusive for the user (minimal annotations required)

- Furthermore, sized types treat inductive and co-inductive types in a similar way
What’s next?
What’s next?

- Design a type-based termination system for Coq
- Implementation!
What’s next?

- Design a type-based termination system for Coq Implementation!
- Sombrero line (Barthe et al.) : $\lambda^\wedge, F^\wedge, \text{CIC}^\wedge$
- Sizes are declared implicitly (not first class):
 - Size inference: little burden for the user
 - Constraint-based algorithm
 - Treats fixpoints and co-fixpoints in the same way
- Still some issues remain in order to adapt to full Coq
In a future Coq version . . .

Fixpoint map \(f : A \rightarrow B \) \((xs : List\langle _ \rangle A) : List\langle _ \rangle B :=
 match xs with
 nil \Rightarrow nil
 cons h t \Rightarrow cons (f h) (map f t)
 end.
In a future Coq version . . .

Fixpoint map ℓ (f : A -> B) (xs : List<ℓ> A) : List<ℓ> B :=
 match xs with
 nil => nil
 | cons h t => cons (f h) (map f t)
 end.

Check map.
map : ∀ ℓ. (A -> B) -> List<ℓ> A -> List<ℓ> B.
Fixpoint map \(\diamond \) (f : A -> B) (xs : List\(<\diamond>\) A) : List\(<\diamond>\) B :=
 match xs with
 nil => nil
 cons h t => cons (f h) (map f t)
end.

Check map.
map : \(\forall \diamond. (A -> B) -> List\(<\diamond>\) A -> List\(<\diamond>\) B.

Fixpoint ntail \(\diamond \) A (x : nat\(<\diamond>\)) : List A -> List A :=
 ...

In a future Coq version . . .
In a future Coq version ...

Fixpoint map (f : A -> B) (xs : List A) : List B :=
 match xs with
 nil => nil
 cons h t => cons (f h) (map f t)
end.

Check map.
map : \forall A. (A -> B) -> List A -> List B.

Fixpoint ntail (x : nat) : List A -> List A :=
 ...

Check ntail.
In a future Coq version . . .

Fixpoint map (f : A -> B) (xs : List A) : List B :=
 match xs with
 nil => nil
 cons h t => cons (f h) (map f t)
end.

Check map.
map : \forall i. (A -> B) -> List A -> List B.

Fixpoint ntail (x : nat) : List A -> List A :=
 ...

Check ntail.
n tail : \forall i \forall j. forall A, nat -> List A -> List A.
In a future Coq version . . .

Fixpoint map \(f : A \to B \) (xs : List\(<i>\) A) : List\(<i>\) B :=
 match xs with
 | nil => nil
 | cons h t => cons (f h) (map f t)
end.

Check map.
map : \(\forall \ i. \ (A \to B) \to \text{List}\(<i>\) A \to \text{List}\(<i>\) B. \)

Fixpoint ntail \(\iota \ A \ (x : \text{nat}\(<i>\>) \) : \text{List} \ A \to \text{List} \ A :=
 ...

Check ntail.
ntail : \(\forall \ i \ \forall \ J_1 \ \forall \ J_2. \ J_2 \sqsubseteq J_1 \Rightarrow \)
 forall A, nat\(<i>\) \to List\(<j_1>\) A \to List\(<j_2>\) A.
Summary

- Keep extending the guard condition is not sustainable
- Time is right to rethink termination checking in Coq
- Sized types seem to be an ideal candidate
 - More expressive
 - Compositional
 - Easier to study and implement
Summary

- Keep extending the guard condition is not sustainable
- Time is right to rethink termination checking in Coq
- Sized types seem to be an ideal candidate
 - More expressive
 - Compositional
 - Easier to study and implement

- Project to start at CMU-Q in September
 - Careful design before implementation
Summary

- Keep extending the guard condition is not sustainable
- Time is right to rethink termination checking in Coq
- Sized types seem to be an ideal candidate
 - More expressive
 - Compositional
 - Easier to study and implement
- Project to start at CMU-Q in September
 - Careful design before implementation
- Is this an opportunity to rethink coinduction in Coq?
Summary

- Keep extending the guard condition is not sustainable
- Time is right to rethink termination checking in Coq
- Sized types seem to be an ideal candidate
 - More expressive
 - Compositional
 - Easier to study and implement

- Project to start at CMU-Q in September
 - Careful design before implementation

- Is this an opportunity to rethink coinduction in Coq?

Thank you!
A note on coinduction with dependent types

- Coinduction in Coq is broken: it does not satisfy type preservation
- The problem: cofixpoint unfolding is only allowed inside case analysis
 \[
 \text{case (cofix } f := M \text{) of . . . } \rightarrow \text{ case } M[f := (\text{cofix } f := M)] \text{ of . . .}
 \]
- Already observed by Giménez in 1996
- Some promising ideas: OTT (McBride) and copatterns (Abel et al.)
A note on coinduction with dependent types

- Example: consider a co-inductive type U with only one constructor $\text{in} : U \rightarrow U$

 \[
 \begin{align*}
 u &: U \\
 \text{force} &: U \rightarrow U \\
 \end{align*}
 \]

 \[
 \begin{align*}
 u &\overset{\text{def}}{=} \text{cofix } u \coloneqq \text{in } u \\
 \text{force} &\overset{\text{def}}{=} \lambda x. \text{case } x \text{ of } \text{in } x' \Rightarrow \text{in } x'
 \end{align*}
 \]

- We can prove that $x = \text{force } x$ for any $x : U$

 \[
 \begin{align*}
 \text{eq} &: \prod x : U. x = \text{force } x \\
 \text{eq} &\overset{\text{def}}{=} \lambda x. \text{case } x \text{ of } \text{in } x' \Rightarrow \text{refl}
 \end{align*}
 \]

- Then, $\text{eq } u : u = \text{force } u$,

Example: consider a co-inductive type U with only one costructor
\[\text{in} : U \rightarrow U \]

\[
\begin{align*}
u & : U \\
\text{force} & : U \rightarrow U \\
u \overset{\text{def}}{=} \text{cofix } u := \text{in } u & \quad \text{force} \overset{\text{def}}{=} \lambda x \cdot \text{case } x \text{ of in } x' \Rightarrow \text{in } x'
\end{align*}
\]

We can prove that $x = \text{force } x$ for any $x : U$

\[
\begin{align*}
\text{eq} & : \prod x : U. x = \text{force } x \\
\text{eq} \overset{\text{def}}{=} \lambda x \cdot \text{case } x \text{ of in } x' \Rightarrow \text{refl}
\end{align*}
\]

Then, $\text{eq } u : u = \text{in } u$,
A note on coinduction with dependent types

- Example: consider a co-inductive type U with only one constructor $\text{in} : U \rightarrow U$

 $$u : U \quad \text{force} : U \rightarrow U$$

 $$u \overset{\text{def}}{=} \text{cofix } u := \text{in } u \quad \text{force} \overset{\text{def}}{=} \lambda x. \text{case } x \text{ of in } x' \Rightarrow \text{in } x'$$

- We can prove that $x = \text{force } x$ for any $x : U$

 $$\text{eq} : \Pi x : U. x = \text{force } x$$

 $$\text{eq} \overset{\text{def}}{=} \lambda x. \text{case } x \text{ of in } x' \Rightarrow \text{refl}$$

- Then, $\text{eq } u : u = \text{in } u$, and $\text{eq } u \rightarrow^* \text{refl}$
A note on coinduction with dependent types

- Example: consider a co-inductive type U with only one constructor
 $\text{in} : U \rightarrow U$

 $$u : U \quad \text{force} : U \rightarrow U$$

 $$u \overset{\text{def}}{=} \text{cofix } u := \text{in } u \quad \text{force} \overset{\text{def}}{=} \lambda x.\text{case } x \text{ of } \text{in } x' \Rightarrow \text{in } x'$$

- We can prove that $x = \text{force } x$ for any $x : U$

 $$\text{eq} : \Pi x : U. x = \text{force } x$$

 $$\text{eq} \overset{\text{def}}{=} \lambda x.\text{case } x \text{ of } \text{in } x' \Rightarrow \text{refl}$$

- Then, $\text{eq } u : u = \text{in } u$, and $\text{eq } u \rightarrow^* \text{refl}$

- But $\text{refl} : u = u$
A note on coinduction with dependent types

- Example: consider a co-inductive type U with only one constructor

 $$
 \text{in} : U \rightarrow U
 $$

 $$
 u : U \\
 \text{force} : U \rightarrow U
 $$

 $$
 u \overset{\text{def}}{=} \text{cofix } u := \text{in } u \\
 \text{force} \overset{\text{def}}{=} \lambda x. \text{case } x \text{ of } \text{in } x' \Rightarrow \text{in } x'
 $$

- We can prove that $x = \text{force } x$ for any $x : U$

 $$
 \text{eq} : \Pi x : U. x = \text{force } x
 $$

 $$
 \text{eq} \overset{\text{def}}{=} \lambda x. \text{case } x \text{ of } \text{in } x' \Rightarrow \text{refl}
 $$

- Then, $\text{eq } u : u = \text{in } u$, and $\text{eq } u \rightarrow^* \text{refl}$

- But $\text{refl} : u = u$

- The types $u = u$ and $u = \text{in } u$ are not convertible since there is no case forcing the unfolding of u.