
DÉduction CERTifiée – ANR DEFI (2009 - 2011)

CEA LIST, Nancy, Orsay, Rennes, Sophia-Antipolis, Systerel

Affordable highest Evaluation Assurance Levels (EAL7)
⇒ Satisfiability Modulo Theory (SMT) provers

1) Design new, efficient cooperating decision procedures.
VeriT, Alt-Ergo SMT provers

2) Design a standard output interface (certificates, proof
objects) From untrusted computations to trusted result

3) Integrate 1-2 with skeptical proof assistant, Proof Carrying
Code, Rodin tool for B, CEA’s Frama-C for C

Baseline: Smaller Trusted Computing Base, Better automation



Organisation du projet

WP1 : Decision procedures and their combination

I Task 1 : Requirement analysis

I Task 2 : Expressiveness (Arithmetics + new
combinations)

I Task 3 : Efficiency

I Task 4 : Proof witnesses for decision procedures

WP2 : Integrating decision procedures into verification tools

I Task 5 : Proof assistants (Coq, Isabelle)

I Task 6 : PCC

I Task 7 : Rodin

I Task 8 : Frama-C



Vue d’ensemble
Verification tools – WP2

WP1

PCC Rodin Frama-C Coq Isabelle

SMT (Alt-Ergo, haRVey)

linear

integer

arithmetic

data

structures

uninterpreted

function

symbols

SMT-LIB extended format

WP2

WP1

Task 1.3

Task 1.1 Task 1.2

Task 1.0

Task 2.1 Task 2.2 Task 2.3 Task 2.4



T1 : Requirement analysis (T0 → T0+6)

Repository of problems to be tackled by the project

I Expressiveness

I Efficiency (expected time / memory)

I Proof witnesses (quantitative / qualitative)

⇒ your inputs are most welcome!



T2 : Expressiveness

Arithmetique (linéaire, non-linéaire, modulo)
Simplex, Gröbner bases, Positivstellenstaz, etc

Combinations (beyond Shostak and Nelson-Oppen)
structures with resource functions, Bernays-Schönfinkel scheme

T3 : Efficiency

Collaborative decision procedures for arithmetic
difference, linear, non-linear

Strategies for efficient deduction
choice of axioms, instantiations



T4: Proof witnesses for decision procedures

Efficient decision procedures are highly optimised (C,C++)

How can we use them safely in other verification tools ?
⇒ generation of verifiable proof witnesses

A proof format for SMTs – propose and experiment

I deduction tree

I execution trace

I ad’hoc certificate (notably for arithmetic)

Accomodate different levels of abstraction

I verbose ⇒ easily checkable but proof too big?

I . . .

I terse ⇒ by omega



T5 : Integration into proof-assistants

Different proof-assistants, different approaches

Coq: proof witnesses are (part of) the proof-term
proof by reflection

Isabelle: proof witnesses can be consumed on the fly
proof by tactics

T6-7-8 : PCC - Rodin - PCC



Conclusion

Coq Next Gen is a theorem prover ?

SMT are about SAT + uninterpreted function symbols How

combination schemes fit with Coq constructive logic
SAT 6= Prop

How Coq congruence fits into the picture



Micromega : how (not?) to bind with Coq

Reflexive verifier for arithmetic proofs

I Complete for non-linear arithmetics over R
Positivstellensatz

I Complete for linear arithmetics over Z
Farkas Lemma + cutting planes (+ enumeration)

I Works for any ordered ring (Evgeny Makarov)
(Z, Z) lia, (Q, Q) psatz Q, (R, {0, 1}) psatz R

I handles propositional logic (naive CNF)



Syntaxification

1. Ltac is too slow for big goals;

2. For outsiders, writing Caml code is hard – pollute the
code base

3. Corner cases (typing, modulo conversion)
forall A: Set, A -> (A -> x >= 1) -> x >= 0

4. external is probably the way forward

5. Proof caches can be handy – in the absence of the prover



How generic is the tactic ?

I have a new ordered ring, can I get a tactic ?

Coq checker is generic

Caml implementation is open source /
The parser needs to be modified. . .



Future work

Port the tactic for cousin datatypes : nat , positive , etc
positive first

Enrich the set of operators (division (euclidian) , max , etc)

Use a fast CNF and smaller certificates


