

Talking to the Rooster
 Communicating with Coq via XML

Tom Hutchinson

Talking to the Rooster
 Communicating with Coq via XML

Tom Hutchinson

Note: I get really nervous when giving talks.
 Please stop me if I start speaking really fast.

Outline

● Motivation
● XML in ML
● XML in Coq
● Reflections

Motivation

● Most common method of communicating with
Coq: copy and paste

● Can write things in ML
● Largely undocumented
● Scary for users
● Many users (even experts) have never seen the

source
– ex: Adam Chlipala

● Changes to source easily break your code

Existing XML

● Claudio Sacerdoti Coen's extraction
● mathematical library
● focus on logical information
● DTD for terms
● no Coq specific information

● Hugo Herbelin's external tactic
● uses Claudio's term DTD
● call external program inside a proof
● send and receive terms

Working with XML

● XML supposed to be simple
● Alphabet soup of standards around it

● DTD, DOM, SAX, XSTL, SOAP, et cetera...

● Which tool(s) to use?
● How does XML fit into function programming?

XML Parsing

● Tree based
● DOM standard
● Read whole document first, then use
● + Validating
● + Fairly easy to use
● - Slow
● - Uses a lot of memory

XML Parsing

● Streaming style
● SAX standard
● XML document as a stream of events
● + Fast
● + Low memory overhead
● - Non-validating
● - Requires writing your own parser

Streaming Parsing

● Push style (SAX)
● Came before pull style
● Register callbacks
● Tedious to use

● Pull style
● User requests next event
● Lazy list of XML events

What an XML Parser gives you

● Not much!
● Still need to write code to use it
● More like a lexer
● Handling code generally either:

 efficient or readable

XML Handling

● While parsing document, build a tree
● In imperative world, use references

● Set to null, write as parse elements

● Function world
● Grow the stack (easy / inefficient)
● Manage a data stack of open tags

– Big pain

XML in ML

● Typically see definitions like

type xml =
| Element of string * (string*string) list * xml list

 (* tag attributes subtrees *)

| PCData of string

● Imagine if in the kernel was

type constr =
| Term of string * string list

!!!

XML in ML

● Most XML parser in OCaml are basically
translations of C parsers or OO parsers

● If only we had a good way of representing trees
in our language...

● ADTs are a good fit for representing XML
● ...almost
● Would like to only be able to represent valid XML
● XDuce and CDuce adding separate type system of

regular expressions

XML in ML

● Can enforce validity with phantom types
● Used in Ocsigen for HTML
● Phantom types made up of polymorphic variants

according to DTD
● Must go through constructor functions

– After fancy tricks, Ocsigen still uses strings :-(

XML in ML

● Still, regular old ADTs are much better than
strings

● Having tons of strings floating around
everywhere
● Ugly / unsafe code
● Hard to change
● Mutable strings lead to huge duplication

Working with XML

● Treat XML parser as a lexer
● Use a parser generator
● XML parsing only needs a DFA
● LALR bottom up method well suited for building

ADTs
● Surprisingly almost no one does this

● Recently saw a paper about this by Luca Padovani
and Stefano Zacchiroli – wish I read this two years
ago

XML in Coq

● Using ocamllex and ocamlyacc
● Lex turns XML tags into tokens
● Yacc turns tokens into Coq internal datatypes
● Can easily replace ocamllex with ulex (handles

unicode) or a real XML parser
● Xmlm (one .ml and .mli)
● PXP
● Binding to a C library

XML in Coq

● Current capabilities:
● From Coq, call external program
● Communicate via pipes

– Switch to sockets?
● Tactic to send goal, receive Ltac expression
● Command to receive Gallina expression

Difficulties

● Coq parsing is centralized
● Focal points where structured data travels through

● Coq printing is not :-(
● Spread out through codebase
● Extensible
● By the time it gets to a cental point, just a bunch of

strings

Design Considerations

● How “smart” should API/interface be?
● PCoq example

● The more the interface knows about, the more
fragile it is

● Terms very stable, commands less so, tactics
always changing

● Driving consideration: How to make this
maintainable?

Future Directions

● External programs using Coq as a tool
● Drive Coq remotely

● External programs called from Coq being able
to ask questions
● Start external program, send request, then program

can ask Coq for more information before sending an
answer

● Documentation and big examples

Demo

Reflections

High Barrier of Entry

● Hard to become a Coq developer !
● Large undocumented codebase

● Please write more !
– Look at Agda – worried about what would happen if Ulf

leaves
● Use English
● Matita has big paper documenting kernel
● Arnaugh's paper about new new proof engine

– Brief, accessible
● Leave more records of what you do / what you are

thinking – does not have to be paper quality

Rant

● Coq is like OCaml
● Problems of OCaml are the problems of Coq

● Users assume monolithic development
– “I wish INRIA would add XYZ”

● Learn through apprenticeship
– Master / pupil
– Learn by reading code, separately reinventing the wheel
– Produces great people but too few
– Wish: Design Patterns for ML / Coq

● Development has to be tied to “research”

Rant

● Look at Haskell community : GHC
● Small core development team
● Large outside group of system hackers
● Open to outside improvements

● Look at ::gasp:: Java
● Great tools
● Great books
● Real documentation
● (Though complicated)

assumption is everyone can do it

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

