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Note: I get really nervous when giving talks.
         Please stop me if I start speaking really fast.
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Motivation

● Most common method of communicating with 
Coq: copy and paste

● Can write things in ML
● Largely undocumented
● Scary for users
● Many users (even experts) have never seen the 

source
– ex: Adam Chlipala

● Changes to source easily break your code



  

Existing XML

● Claudio Sacerdoti Coen's extraction
● mathematical library
● focus on logical information
● DTD for terms
● no Coq specific information

● Hugo Herbelin's external tactic
● uses Claudio's term DTD
● call external program inside a proof
● send and receive terms



  

Working with XML

● XML supposed to be simple
● Alphabet soup of standards around it

● DTD, DOM, SAX, XSTL, SOAP, et cetera...

● Which tool(s) to use?
● How does XML fit into function programming?



  

XML Parsing

● Tree based
● DOM standard
● Read whole document first, then use
● + Validating
● + Fairly easy to use
● - Slow
● - Uses a lot of memory



  

XML Parsing

● Streaming style
● SAX standard
● XML document as a stream of events
● + Fast
● + Low memory overhead
● - Non-validating
● - Requires writing your own parser



  

Streaming Parsing

● Push style (SAX)
● Came before pull style
● Register callbacks
● Tedious to use

● Pull style
● User requests next event
● Lazy list of XML events



  

What an XML Parser gives you

● Not much!
● Still need to write code to use it
● More like a lexer
● Handling code generally either:

 efficient or readable



  

XML Handling

● While parsing document, build a tree
● In imperative world, use references

● Set to null, write as parse elements

● Function world
● Grow the stack (easy / inefficient)
● Manage a data stack of open tags

– Big pain



  

XML in ML

● Typically see definitions like

type xml = 
| Element of string * (string*string) list * xml list

              (*     tag          attributes           subtrees   *)

| PCData of string

● Imagine if in the kernel was

type constr =
| Term of string * string list

!!!



  

XML in ML

● Most XML parser in OCaml are basically 
translations of C parsers or OO parsers

● If only we had a good way of representing trees 
in our language...

● ADTs are a good fit for representing XML
● ...almost
● Would like to only be able to represent valid XML
● XDuce and CDuce adding separate type system of 

regular expressions



  

XML in ML

● Can enforce validity with phantom types
● Used in Ocsigen for HTML
● Phantom types made up of polymorphic variants 

according to DTD
● Must go through constructor functions

– After fancy tricks, Ocsigen still uses strings :-(



  

XML in ML

● Still, regular old ADTs are much better than 
strings

● Having tons of strings floating around 
everywhere
● Ugly / unsafe code
● Hard to change
● Mutable strings lead to huge duplication 



  

Working with XML

● Treat XML parser as a lexer
● Use a parser generator
● XML parsing only needs a DFA
● LALR bottom up method well suited for building 

ADTs
● Surprisingly almost no one does this

● Recently saw a paper about this by Luca Padovani 
and Stefano Zacchiroli – wish I read this two years 
ago



  

XML in Coq

● Using ocamllex and ocamlyacc
● Lex turns XML tags into tokens
● Yacc turns tokens into Coq internal datatypes
● Can easily replace ocamllex with ulex (handles 

unicode) or a real XML parser
● Xmlm (one .ml and .mli)
● PXP
● Binding to a C library



  

XML in Coq

● Current capabilities:
● From Coq, call external program
● Communicate via pipes

– Switch to sockets?
● Tactic to send goal, receive Ltac expression
● Command to receive Gallina expression



  

Difficulties

● Coq parsing is centralized
● Focal points where structured data travels through

● Coq printing is not :-(
● Spread out through codebase
● Extensible
● By the time it gets to a cental point, just a bunch of 

strings



  

Design Considerations

● How “smart” should API/interface be?
● PCoq example

● The more the interface knows about, the more 
fragile it is

● Terms very stable, commands less so, tactics 
always changing

● Driving consideration: How to make this 
maintainable?



  

Future Directions

● External programs using Coq as a tool
● Drive Coq remotely

● External programs called from Coq being able 
to ask questions
● Start external program, send request, then program 

can ask Coq for more information before sending an 
answer

● Documentation and big examples



  

Demo



  

Reflections



  

High Barrier of Entry

● Hard to become a Coq developer !
● Large undocumented codebase

● Please write more !
– Look at Agda – worried about what would happen if Ulf 

leaves
● Use English
● Matita has big paper documenting kernel
● Arnaugh's paper about new new proof engine

– Brief, accessible
● Leave more records of what you do / what you are 

thinking – does not have to be paper quality



  

Rant

● Coq is like OCaml
● Problems of OCaml are the problems of Coq

● Users assume monolithic development
– “I wish INRIA would add XYZ”

● Learn through apprenticeship
– Master / pupil
– Learn by reading code, separately reinventing the wheel
– Produces great people but too few
– Wish: Design Patterns for ML / Coq

● Development has to be tied to “research” 



  

Rant

● Look at Haskell community : GHC
● Small core development team
● Large outside group of system hackers
● Open to outside improvements

● Look at ::gasp:: Java
● Great tools
● Great books
● Real documentation
● (Though complicated) 

assumption is everyone can do it



  

Questions
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