Matita's User Interaction

Enrico Tassi

Microsoft Research-INRIA Joint Center

Journée ADT Interfaces — 27 October 2010 — Paris

History

Input
Ambiguity support
Tinycals
UTF-8 support

Output
MathML & friends
Proof rendering
GtkMathView
Graphs

Metadata
What's interesting about formal proofs?

History

Matita was born from a rib of the MoWGLI project (Coq's
library on the web)

» Web standards:

» XML for CIC terms
» MathML for content/presentation
» CicBrowser (for the library)

» Natural language presentation of proof terms
» Ambiguity manager

» Searching facilities

History

Input
Ambiguity support

Output

Metadata

Ambiguity manager

Operators and names can be overloaded. The intended
interpretation if chosen among the valid ones interactively.

Ambiguous input ™% I
lemma product_of sums: Ya.b.c.d. (a+b)*(c+d) = a*c + a*d + b*c + b*d.
integer times

natural imes

€ cancel | *Eorwardl

User's preferences are recorded in the script, and kept into
account when interpreting the following commands.

Ambiguity manager: errors
Multiple interpretation also means multiple errors:
» Error messages must be equipped with the interpretation
that generated them
» Spurious errors must be hidden

» Many notions of “spurious”
» The implemented one: located in a sub-formula that
admits a valid interpretation

Disambiguation error ™
Click on an error to see the corresponding message:
= Error location 1

- Error message 1.1 (in passes 3 4)
eq leibnitz's equality

plus list append
cons cons interpretation "list append" 'plus x y
times integer times

lemma example:

b Error message 1.2 (in passes 4) ¥a,b,c,%,y. a+b=2%a::b

b Error location 2

History
Input

Tinycals

Output

Metadata

Tinycals: history

Original aim: make proof structuring/refactoring less painful.

Tinycals: history

Original aim: make proof structuring/refactoring less painful.

theorem associative_Ztimes :
unfold associative .

intros .

elim x.

simplify .

reflexivity .

elim y.

simplify .

reflexivity .

elim z.

simplify .

reflexivity .

change with

(pos (pred ((S (pred ((S n) * (S n1)))) * (S n2)
pos (pred ((S n) = (S (pred ((S nl)
rewrite < S_pred.

rewrite < S_pred.

rewrite < assoc_times.

reflexivity .

apply 1t_O_times.S_S.

apply 1t_O_times.S_S.

change with

(neg (pred ((S (pred ((S n) = (S n1)))) = (S n2))
neg (pred ((S n) * (S (pred ((S nl1)
rewrite < S_pred.

rewrite < S_pred.

rewrite < assoc_times.

reflexivity .

associative Z Ztimes.

)
* (S n2))))):

) =
* (S n2))))).

apply It-O_times.S_S.

apply It-O_times.S_S.

elim z.

simplify .

reflexivity .

change with

(neg (pred ((S (pred ((S)
neg (pred ((Sn) =
rewrite < S_pred.
rewrite < S_pred.
rewrite < assoc_times.
reflexivity .

apply 1t-O_times.S_S.

apply 1t_O_times S_S.
change with

(pos (pred ((S (pred (S n)
pos(pred ((Sn) = (S
rewrite < S_pred.
rewrite < S_pred.
rewrite < assoc._times.
reflexivity .

apply 1t-O_times S_S.
apply 1t.O_times.S_S.
elim y.

simplify .

reflexivity .

elim z.

(pred ((S nl1) *

* (S nl)))) =
(S (pred ((S nl) * (Sn

(s

S n2
)

b}
=

(S n1))) * (S n2)))

n2))))):

Tinycals: what about indentation?
Indentation looks like a cheap solution

~
theorem associative_Ztimes: associative Z Ztimes.

unfold associative . intros .elim x.
simplify . reflexivity .
elim y.
simplify . reflexivity .
elim z.
simplify . reflexivity .
change with
(pos (pred ((S (pred (S n) (S n1)))) (S n2))) =
pos (pred (S n) * (S (pred ((S nl) = (S n2))))))-
rewrite < S_pred.rewrite < S_pred.rewrite < assoc_times. reflexivity .
apply 1t_O_times_S_S .apply 1t_O_times.S_S.
change with
(neg (pred ((S (pred (S n) * (S n1)))) * (S n2))) =
neg (pred (S n) * (S (pred ((S n1) * (S n2))))))).
rewrite < S_pred.rewrite < S_pred.rewrite < assoc_times. reflexivity .
apply 1t_O_times_S_S .apply 1t_O_times.S_S.

elim z.
simplify . reflexivity .
change with

(neg (pred ((S (pred (S n) * (S n1)))) * (S n2))) =

neg (pred (S n) (S (pred ((S n1) * (S n2))))))).
rewrite < S_pred.rewrite < S_pred.rewrite < assoc_times. reflexivity .
apply 1t-O_times_S_S .apply 1t-O_times.S_S.

change with

(pos (pred ((S (pred (S n) (S n1)))) (S n2))) =

pos(pred (S n) (S (pred ((S n1) * (S n2)))))).
rewrite < S_pred.rewrite < S_pred.rewrite < assoc_times. reflexivity .
apply 1t_O_times_S_S .apply 1t_O_times.S_S.

elim y.

Tinycals
Indentation only “suggests” the structure of a proof
» but it's not checked by the system

Why there were no tacticals?

» Hard to build a huge proof in one go with the
executed=locked interaction style

» We are lazy, refactoring costs time
» Read a proof made with tacticals is harder

Tinycals

Indentation only “suggests” the structure of a proof
» but it's not checked by the system
Why there were no tacticals?

» Hard to build a huge proof in one go with the
executed=locked interaction style

» We are lazy, refactoring costs time
» Read a proof made with tacticals is harder
The trick
» De-structured syntax
> NO: (T) = “[' (T) T (T) T |
S YES(T) =T | T | T |

Tinycals

Indentation only “suggests” the structure of a proof
» but it's not checked by the system
Why there were no tacticals?
» Hard to build a huge proof in one go with the
executed=locked interaction style
» We are lazy, refactoring costs time
» Read a proof made with tacticals is harder
The trick
» De-structured syntax
> NO: (T) = “[' (T) T (T) T |
S YES(T)u="T | T | T |
» Small step semantics

» “balancing” has to be managed by the semantics, since
the grammar is now weaker

Tinycals: syntax

(S) =
{

- I

|

|

T
T
T
| " * L

’ “Skip”
’ wyn

|

|

]

“focus” [g1;--

udonen

Tinycals: semantics (1/6)

type £ (* proof status)

type goal
val apply tac : (B) — £ — goal — £ X goal 1ist x goal list

Tinycals:

task

tag
stack
code
status

semantics (2/6)

int x (0 goal | C goal)
task list

task list

task list

B|F

(F'x 7 X Kk x tag) list
(S) list

code x & x stack

task)

ontext)

‘todo” list)
dot's continuation)
stack level tag)
context stack)
statements)
evaluation status)

(
(c
(
(
(
(
(
(

Tinycals: semantics (3/6)
((B):c,, (I, 1,K,t):S) — (¢, &, S')
where [g1;- - +; gn] = get_O_goals_in_tasks_list(I")
(€o: G55 G5) = (& 1 [D)
(Siv1: G2, Giya) = (& 67, GF) 8i+1 € Gf
(§iv1, G Gic+l> = (€, (GP\G)UG°, GFUGT) ¢
where (¢, G°, G°) = apply _tac((B),&;, gi+1)
and S" = (I, 7/, k', t) :: close_tasks(GS, S)
and " = mark_as_handled(Gy)

and 7_/ — remove,taSkS(G,f7 T)

and

and k' = remove_tasks(G¢, k)

("¢, S) — (c,&,S)

Tinycals: semantics (4/6)

("skip" ¢, &, (M1, K, t):S) — (c,&,S)
where I' = [(j1,C g1); -+ 5 (n, C &n)]
and G° = [g1;--; &n]

and S’ = ([], remove_tasks(G€, T), remove_tasks(G€, k), t)
. close_tasks(G<, S)

(", & (MR, t)S) — (¢, & ([h], 7 [k) UKk, t)::S)
where get_O_tasks([') = [h;---; 1]

(", (M luk, t):S) — (¢, & ([l], 7k, t):2S)
where get_O _tasks(') =[]

Tinycals: semantics (5/6)

("[" e & ([hye -+), 7Ry 8y 2 S) — (c,&,S)
when renumber_branches([ly;--+; I,]) = [l; -+ ;]
and S" = ([K],[1,[1,B) == ([l; -~ ; I)], 7, K, t) 2 S

(1 e, &N m kB ([l - s o], 75 K) 2 S) — (c,6,S)
where $’ = ([h], 7 U get_O_tasks(') Uk, [], B) :: ([l;- - 5 o], 7/, &

(g dn " e 8 (N1 [1,B) (T, 7, K) 0 S) — (c,€,S")
where unhandled(!)
andVj=1...n, 3={,s), [el:l
and 8" = ([h;--- i L], 7 []1,B) = {((l=:)\ [h; -+ - s lo], 7/ K,) 2 S

Tinycals: semantics (6/6)
("x" e & ([, 7 (1 B) (T 7 R) 2 S) — (6,6,9)
where unhandled(/)
and S" = ([::T",7,[],B) = {[], 7 U get_O_tasks(lN) U k, ', t') 2 S
(T e, &M 1 1, BY (T 7 K) i S) — (¢, &,S)
where §" = (7 U get_O_tasks(T)UT" Uk, 7',k t'): S
<“fOCUS” [gl;’ T gn] e 57 <r7 T, R, t> - S> — <C7 57 Sl)
where g; € get_O_goals_in_status(S)

and S" = (mark_as_handled([g1;- - ; &n]),[],[],F)
:: close_tasks((I', 7, k, t) :: S)

(“done” ::c,& ([, [I,[],F)=S) — (c¢,&,S)

Demo: property_sigma.ma

demo

What about try, repeat, ...

Consider I' = [h; k] and the command try (tacl; tac2).

Think of the (unfortunate) case in which tacl on
instantiates b.

Then, if tac2 fails on /; but has success on k, what is the
expected semantics?

» for sure try (tacl; tac2) should have no effect on
» but the system already displayed some progress on /;

» and skipping tacl on /; may change the result of tacl on h

The (right?) types for tactics

Matita 0.5 adopted a conservative type for tactics
> tac: goal * status — goal list * status
Matita 1.0 (will) unifies the type of tactics and tacticals
» tac: goal list * status — goal list * status
We then have
» focus: tactic — goal — old_tactic
» distribute : old_tactic — tactic
Gain
» auto on a cluster of dependent goals

» high-level management commands (postpone, regroup,
clusterize)

» eases the implementation of some declarative idioms

History

Input

UTF-8 support

Output

Metadata

UTF-8: input

Displaying UTF-8 is easy. What's hard is a comfortable input

of UTF-8.
name ‘ input ‘ result
\TeX \Rightarrow | =
\alpha @
Ligatures => =
—> —
Alternatives | a o a
P npPp
Memory X last alternative for x you used

Demo: utf8.ma

demo

History

Input

Output
MathML & friends

Metadata

MathML

Mathematical Markup Language (MathML) is an XML
language for describing mathematical content and its
presentation.

» (UTF-8) symbols
» 2-D notations

» Colors

2-D notations

OMDoc

OMDoc (Open Mathematical Documents) is a semantic
markup format for mathematical documents.

OMDoc allows for mathematical expressions on three levels:

Object level formulae, written in Content MathML,
OpenMath or similar

Statement level definitions, theorems, proofs, examples . ..

Theory level A theory is a set of contextually related
statements

History

Input

Output

Proof rendering

Metadata

Natural language output (and input) (1/2)

Proof times n Sm
Thesis:
7 n:natT m:natn+n*m=n*35 m
(times n_Sm)
Asgsume nnat
Assume mmat
we proceed by induction on n
to prove n+n*m=n*S m

Case 0=
the thesis hecomes O+0*m=0%3 m
by (refl eq)

we conclude O =0
that is equivalent to O+O0*m=0*5 m

Case § nlnat=
the thesis becomes S nl+3 nl*m=Snl*s m
by induction hypothesis we know
(Hnl+nl*m=nl*3 m

Natural language output (and input) (2/2)

Eile Edit Wiew

D - @ ﬁ 53 lcic:{matita}rings{eq_mult_% vl

'.’.:’ eq_mult_zero_x_zero l Locate =¥

Proof eq mult zero x zero
Thesis:

¥ R:ring¥ x:RO-x=0
(eq mult zero x_zero)

Assume Rring

Assume xR

0-x= 0+0-x by (zero_neutral _ _)
= x+x +0-x by (opp_inverse _ _)

x +(r +0x) by (plus_assoc _ _]

% +(1-x+0-x) by (one_neutral left _ _)

= x +(H0pFx by mult plus_distr_right _ _ _ _)
= x+{+1x by (plus comm _ _ _)
=x+1-x by (zero_neutral _ _)

= x+x by lone neutral left _)
=0 by (opp_inverse _)
we conclude 0x =0
we conclude v R:ring¥ x: RO-x =0

Transformations

N N N

XML cIc oMDoc | | MathML
+ boxes
Declarative
language
Procedural
language

Demo: inline.ma

demo

History

Input

Output

GtkMathView

Metadata

MathML widget

GtkMathView is a C++ rendering engine for MathML.
http://helm.cs.unibo.it/mml-widget/

Gives us, in addition to MathML rendering:
» Semantic selection
» Point and click
» Hypertext

» Alternative notations

http://helm.cs.unibo.it/mml-widget/

Point and

click

(a-+b) kzs:m("’i?) 2Kk

Sm) mb(sm+2(3m) (S mk)

BELC-reduce - Normalize

Apply tactic b Simplify

Demo: natural_deduction.ma

demo

History

Input

Output

Graphs

Metadata

Directed graphs

Some data can be displayed by means of a directed graph:
» coercions
» dependencies between scripts
» dependencies between developments

Graphviz (dot) can generate “click-able” graphs

Demo: coercions.ma

demo

Non-directed graphs

“Equivalence” classes can be displayed by means of a graph:

» unification hints

Demo: hints.ma

demo

History

Input

Output

Metadata
What's interesting about formal proofs?

Metadata (or machine understandable data)

» Last year | was hired by “mathematicians” to formalize
their mathematics!

» They never asked: “Was my theorem OK?"

» But they asked me a lot of questions that Matita was
(and still is) unable to answer to

Data

What can Matita do with proof terms?
» Search
» Dependencies

» ...nothing more ...

Demo: deps-search.ma

demo

What's next?

What will be dropped/kept/improved in Matita 1.07

>

Improved: tactics, tinycals and proof language (all small
step)
Improved: script file format (richer, with hyperlinks)

Dropped: proof rendering (plugin)

Dropped: MathML (plugin?)

Dropped: XML (as the primary storage format)

Kept (re-implemented): semantic selection, proof by click
Kept: graphs

Thanks

Thanks!

	History
	Input
	Ambiguity support
	Tinycals
	UTF-8 support

	Output
	MathML & friends
	Proof rendering
	GtkMathView
	Graphs

	Metadata
	What's interesting about formal proofs?

