Matita's User Interaction

Enrico Tassi

Microsoft Research-INRIA Joint Center
Journée ADT Interfaces - 27 October 2010 — Paris

History

Input

Ambiguity support
Tinycals
UTF-8 support
Output
MathML \& friends
Proof rendering
GtkMathView
Graphs
Metadata
What's interesting about formal proofs?

History

Matita was born from a rib of the MoWGLI project (Coq's library on the web)

- Web standards:
- XML for CIC terms
- MathML for content/presentation
- CicBrowser (for the library)
- Natural language presentation of proof terms
- Ambiguity manager
- Searching facilities

History
Input
Ambiguity support
Tinycals
UTF-8 support
Output
MathML \& friends
Proof rendering
GtkMathView
Graphs
Metadata
What's interesting about formal proofs?

Ambiguity manager

Operators and names can be overloaded. The intended interpretation if chosen among the valid ones interactively.

User's preferences are recorded in the script, and kept into account when interpreting the following commands.

Ambiguity manager: errors

Multiple interpretation also means multiple errors:

- Error messages must be equipped with the interpretation that generated them
- Spurious errors must be hidden
- Many notions of "spurious"
- The implemented one: located in a sub-formula that admits a valid interpretation

```
Disambiguation error
    Click on an error to see the corresponding message:
Error location 1
    \nabla Error message }1.1\mathrm{ (in passes 3 4)
    eq
    plus
    cons
    times
D Error message 1.2 (in passes 4)
Error location 2
```

leibnitz's equality
list append
cons
integer times
interpretation "list append" 'plus x y
lemma example:
$\mathrm{y} a, b, c, x, y . a+b=2 * a:: b$.

History
Input
Ambiguity support
Tinycals
UTF-8 support
Output
MathML \& friends
Proof rendering
GtkMathView
Graphs
Metadata
What's interesting about formal proofs?

Tinycals: history

Original aim: make proof structuring/refactoring less painful.

Tinycals: history

Original aim: make proof structuring/refactoring less painful.

```
theorem associative_Ztimes: associative Z Ztimes.
unfold associative.
intros.
elim x.
simplify
reflexivity
elim y.
simplify
reflexivity .
elim z.
simplify .
reflexivity
change with
(pos (pred ((S (pred ((S n) * (S n1)))) * (S n2))) )=
pos (pred ((S n) * (S (pred ((S n1) * (S n2 ))))))).
rewrite < S_pred.
rewrite < S_pred.
rewrite < assoc_times.
reflexivity
apply lt_O_times_S_S.
apply lt_O_times_S_S.
change with
(neg (pred ((S (pred ((S n) * (S n1)))) * (S n2))) )=
neg (pred ((S n)*(S (pred ((S n1)*(S n2 ))))))).
rewrite < S_pred.
rewrite < S_pred.
rewrite < assoc_times.
    reflexivity
```

```
apply It_O_times_S_S.
apply lt_O_times_S_S.
elim z.
simplify .
    reflexivity
change with
(neg (pred ((S (pred ((S n) *(S n1)))) *(S n2))))=
neg (pred ((S n) * (S (pred ((S n1) * (S n2 ))))))).
rewrite < S_pred.
rewrite < S_pred.
rewrite < assoc_times.
reflexivity
apply lt_O_times_S_S.
apply lt_O_times_S_S.
change with
(pos (pred ((S (pred ((S n) *(S n1)))) *(S n2))) =
pos(pred ((S n) * (S (pred ((S n1) * (S n2 ))))))).
rewrite < S_pred.
rewrite < S_pred.
rewrite < assoc_times.
    reflexivity
apply lt_O_times_S_S.
apply lt_O_times_S_S.
elim y.
simplify.
    reflexivity
elim z.
```


Tinycals: what about indentation? Indentation looks like a cheap solution

```
theorem associative_Ztimes: associative Z Ztimes.
unfold associative . intros .elim x.
    simplify . reflexivity
    elim y.
        simplify. reflexivity
        elim z.
            simplify . reflexivity .
            change with
            (pos (pred ((S (pred ((S n) * (S n1)))) *(S n2))) =
            pos (pred ((S n) * (S (pred ((S n1) * (S n2 ))))))).
                rewrite < S_pred.rewrite < S_pred.rewrite < assoc_times. reflexivity
                    apply It_O_times_S_S .apply It_O_times_S_S S
            change with
            (neg (pred ((S (pred ((S n) * (S n1)))) * (S n2))) =
            neg(pred ((S n) *(S (pred ((S n1)*(S n2 ))))))).
                rewrite < S_pred.rewrite < S_pred.rewrite < assoc_times. reflexivity .
                    apply It_O_times_S_S .apply It_O_times_S_S.
        elim z.
            simplify . reflexivity .
            change with
            (neg (pred ((S (pred ((S n) * (S n1)))) * (S n2))) =
            neg (pred ((S n) * (S (pred ((S n1) * (S n2 ))))))).
                rewrite < S_pred.rewrite < S_pred.rewrite < assoc_times. reflexivity
                    apply It_O_times_S_S .apply It_O_times_S_S.
            change with
            (pos (pred ((S (pred ((S n) * (S n1)))) * (S n2))) =
            pos(pred ((S n) * (S (pred ((S n1) * (S n2 ))))))).
                rewrite < S_pred.rewrite < S_pred.rewrite < assoc_times. reflexivity .
                apply It_O_times_S_S .apply lt_O_times_S_S.
elim y.
```


Tinycals

Indentation only "suggests" the structure of a proof

- but it's not checked by the system

Why there were no tacticals?

- Hard to build a huge proof in one go with the executed=locked interaction style
- We are lazy, refactoring costs time
- Read a proof made with tacticals is harder

Tinycals

Indentation only "suggests" the structure of a proof

- but it's not checked by the system

Why there were no tacticals?

- Hard to build a huge proof in one go with the executed=locked interaction style
- We are lazy, refactoring costs time
- Read a proof made with tacticals is harder

The trick

- De-structured syntax
- NO: $\langle T\rangle::=$ "[" $\langle T\rangle$ "|" $\langle T\rangle$ "]" $\mid \ldots$
- YES: $\langle T\rangle::=$ "[" \mid "' | "]"..

Tinycals

Indentation only "suggests" the structure of a proof

- but it's not checked by the system

Why there were no tacticals?

- Hard to build a huge proof in one go with the executed=locked interaction style
- We are lazy, refactoring costs time
- Read a proof made with tacticals is harder

The trick

- De-structured syntax
- NO: $\langle T\rangle::=$ "[" $\langle T\rangle$ "|" $\langle T\rangle$ "]" $\mid \ldots$
- YES: $\langle T\rangle::=$ "[" | \mid " \mid "]"..
- Small step semantics
- "balancing" has to be managed by the semantics, since the grammar is now weaker

Tinycals: syntax

$$
\begin{array}{ll}
\langle L\rangle & ::= \\
& \langle S\rangle \\
\mid & \langle S\rangle\langle S\rangle \\
\langle B\rangle & ::= \\
& \langle T\rangle \\
& \text { "try" }\langle B\rangle \\
& \text { "repeat" }\langle B\rangle \\
\mid & \langle B\rangle \text { ";" }\langle B\rangle \\
\mid & \langle B\rangle \text { "; }[\text { " }\langle B\rangle \text { "' } \ldots \text { ". "|" }\langle B\rangle \text { "]" } \\
\langle T\rangle & ::=\text { "apply" } \\
\mid & \text { "rewrite" }
\end{array}
$$

Tinycals: semantics $(1 / 6)$

type $\xi \quad(*$ proof status $*)$
type goal
val apply_tac $:\langle B\rangle \rightarrow \xi \rightarrow$ goal $\rightarrow \xi \times$ goal list \times goal list

Tinycals: semantics $(2 / 6)$

$$
\begin{aligned}
\text { task } & =\text { int } \times(0 \text { goal } \mid \mathrm{C} \text { goal }) & & \text { (task) } \\
\Gamma & =\text { task list } & & \text { (context) } \\
\tau & =\text { task list } & & \text { ("todo" list) } \\
\kappa & =\text { task list } & & \text { (dot's continuation) } \\
\text { tag } & =\mathrm{B} \mid \mathrm{F} & & \text { (stack level tag) } \\
\text { stack } & =(\Gamma \times \tau \times \kappa \times \text { tag }) \text { list } & & \text { (context stack) } \\
\text { code } & =\langle S\rangle \text { list } & & \text { (statements) } \\
\text { status } & =\text { code } \times \xi \times \text { stack } & & \text { (evaluation status) }
\end{aligned}
$$

Tinycals: semantics $(3 / 6)$

$$
\begin{aligned}
& \langle\langle B\rangle:: c, \xi,\langle\Gamma, \tau, \kappa, t\rangle:: S\rangle \longrightarrow\left\langle c, \xi_{n}, S^{\prime}\right\rangle \\
& \text { where }\left[g_{1} ; \cdots ; g_{n}\right]=\text { get_O_goals_in_tasks_list(} \Gamma \text {) } \\
& \left\{\left\langle\xi_{0}, G_{0}^{o}, G_{0}^{c}\right\rangle=\langle\xi,[],[]\rangle\right. \\
& \text { and } \begin{cases}\left\langle\xi_{i+1}, G_{i+1}^{o}, G_{i+1}^{c}\right\rangle=\left\langle\xi_{i}, G_{i}^{o}, G_{i}^{c}\right\rangle & g_{i+1} \in G_{i}^{c}\end{cases} \\
& \left\langle\xi_{i+1}, G_{i+1}^{o}, G_{i+1}^{c}\right\rangle=\left\langle\xi^{\prime},\left(G_{i}^{o} \backslash G^{c}\right) \cup G^{o}, G_{i}^{c} \cup G^{c}\right\rangle \quad \notin \\
& \text { where }\left\langle\xi^{\prime}, G^{0}, G^{c}\right\rangle=\operatorname{apply}-\operatorname{tac}\left(\langle B\rangle, \xi_{i}, g_{i+1}\right) \\
& \text { and } S^{\prime}=\left\langle\Gamma^{\prime}, \tau^{\prime}, \kappa^{\prime}, t\right\rangle:: \text { close_tasks }\left(G_{n}^{c}, S\right) \\
& \text { and } \Gamma^{\prime}=\text { mark_as_handled }\left(G_{n}^{o}\right) \\
& \text { and } \tau^{\prime}=\text { remove_tasks }\left(G_{n}^{c}, \tau\right) \\
& \text { and } \kappa^{\prime}=\text { remove_tasks }\left(G_{n}^{c}, \kappa\right) \\
& \langle " ; ":: c, \xi, S\rangle \longrightarrow\langle c, \xi, S\rangle
\end{aligned}
$$

Tinycals: semantics $(4 / 6)$

$$
\begin{aligned}
& \langle " s k i p ":: c, \xi,\langle\Gamma, \tau, \kappa, t\rangle:: S\rangle \longrightarrow\left\langle c, \xi, S^{\prime}\right\rangle \\
& \text { where } \Gamma=\left[\left\langle j_{1}, \mathrm{C} g_{1}\right\rangle ; \cdots ;\left\langle j_{n}, \mathrm{C} g_{n}\right\rangle\right] \\
& \text { and } G^{c}=\left[g_{1} ; \cdots ; g_{n}\right] \\
& \text { and } S^{\prime}=\left\langle[], \text { remove_tasks }\left(G^{c}, \tau\right), \text { remove_tasks }\left(G^{c}, \kappa\right), t\right\rangle \\
& :: \text { close_tasks }\left(G^{c}, S\right) \\
& \langle " . ":: c, \xi,\langle\Gamma, \tau, \kappa, t\rangle:: S\rangle \longrightarrow\left\langle c, \xi,\left\langle\left[I_{1}\right], \tau,\left[I_{2} ; \cdots ; I_{n}\right] \cup \kappa, t\right\rangle:: S\right\rangle \\
& \text { where get_O_tasks }(\Gamma)=\left[I_{1} ; \cdots ; I_{n}\right] \\
& \langle " . ":: c, \xi,\langle\Gamma, \tau, I:: \kappa, t\rangle:: S\rangle \longrightarrow\langle c, \xi,\langle[/], \tau, \kappa, t\rangle:: S\rangle \\
& \text { where get_O_tasks }(\Gamma)=[]
\end{aligned}
$$

Tinycals: semantics $(5 / 6)$

$$
\begin{aligned}
& \left\langle "\left[\text { " }:: c, \xi,\left\langle\left[I_{1} ; \cdots ; I_{n}\right], \tau, \kappa, t\right\rangle:: S\right\rangle \longrightarrow\left\langle c, \xi, S^{\prime}\right\rangle\right. \\
& \quad \text { when renumber_branches }\left(\left[I_{1} ; \cdots ; I_{n}\right]\right)=\left[I_{1}^{\prime} ; \cdots ; I_{n}^{\prime}\right] \\
& \quad \text { and } S^{\prime}=\left\langle\left[I_{1}^{\prime}\right],[],[], \mathrm{B}\right\rangle::\left\langle\left[I_{2}^{\prime} ; \cdots ; I_{n}^{\prime}\right], \tau, \kappa, t\right\rangle:: S \\
& \left\langle\text { 'l' }^{\prime}:: c, \xi,\langle\Gamma, \tau, \kappa, \mathrm{~B}\rangle::\left\langle\left[I_{1} ; \cdots ; I_{n}\right], \tau^{\prime}, \kappa^{\prime}, t^{\prime}\right\rangle:: S\right\rangle \longrightarrow\left\langle c, \xi, S^{\prime}\right\rangle \\
& \quad \text { where } S^{\prime}=\left\langle\left[I_{1}\right], \tau \cup \operatorname{get}_{-} O_{-} \operatorname{tasks}(\Gamma) \cup \kappa,[], \mathrm{B}\right\rangle::\left\langle\left[I_{2} ; \cdots ; I_{n}\right], \tau^{\prime}, \kappa^{\prime}\right. \\
& \left\langle i_{1}, \ldots, i_{n} ": \text { " }:: c, \xi,\langle[I], \tau,[], \mathrm{B}\rangle::\left\langle\Gamma^{\prime}, \tau^{\prime}, \kappa^{\prime}, t^{\prime}\right\rangle:: S\right\rangle \longrightarrow\left\langle c, \xi, S^{\prime}\right\rangle \\
& \quad \text { where unhandled }(I)
\end{aligned}
$$

and $\forall j=1 \ldots n, \quad \exists l_{j}=\left\langle j, s_{j}\right\rangle, \quad l_{j} \in I:: \Gamma^{\prime}$
and $S^{\prime}=\left\langle\left[I_{1} ; \cdots ; I_{n}\right], \tau,[], \mathrm{B}\right\rangle::\left\langle\left(I:: \Gamma^{\prime}\right) \backslash\left[I_{1} ; \cdots ; I_{n}\right], \tau^{\prime}, \kappa^{\prime}, t^{\prime}\right\rangle:: S$

Tinycals: semantics $(6 / 6)$

$\left\langle " *: ":: c, \xi,\langle[/], \tau,[], B\rangle::\left\langle\Gamma^{\prime}, \tau^{\prime}, \kappa^{\prime}, t^{\prime}\right\rangle:: S\right\rangle \longrightarrow\left\langle c, \xi, S^{\prime}\right\rangle$ where unhandled (I) and $S^{\prime}=\left\langle I:: \Gamma^{\prime}, \tau,[], B\right\rangle::\left\langle[], \tau^{\prime} \cup\right.$ get_O_tasks $\left.(\Gamma) \cup \kappa, \kappa^{\prime}, t^{\prime}\right\rangle:: S$
$\left.\langle "] ":: c, \xi,\langle\Gamma, \tau, \kappa, \mathrm{~B}\rangle::\left\langle\Gamma^{\prime}, \tau^{\prime}, \kappa^{\prime}, t^{\prime}\right\rangle:: S\right\rangle \longrightarrow\left\langle c, \xi, S^{\prime}\right\rangle$
where $S^{\prime}=\left\langle\tau \cup\right.$ get_O_tasks $\left.(\Gamma) \cup \Gamma^{\prime} \cup \kappa, \tau^{\prime}, \kappa^{\prime}, t^{\prime}\right\rangle:: S$
$\left\langle " f o c u s "\left[g_{1} ; \cdots ; g_{n}\right]:: c, \xi,\langle\Gamma, \tau, \kappa, t\rangle:: S\right\rangle \longrightarrow\left\langle c, \xi, S^{\prime}\right\rangle$
where $g_{i} \in$ get_O_goals_in_status(S)
and $S^{\prime}=\left\langle\right.$ mark_as_handled $\left.\left(\left[g_{1} ; \cdots ; g_{n}\right]\right),[],[], F\right\rangle$
::close_tasks $(\langle\Gamma, \tau, \kappa, t\rangle:: S)$
$\langle " d o n e ":: c, \xi,\langle[],[],[], F\rangle:: S\rangle \longrightarrow\langle c, \xi, S\rangle$

Demo: property_sigma.ma

demo

What about try, repeat, ...

Consider $\Gamma=\left[\ell_{1} ; \ell_{2}\right]$ and the command try (tac1; tac2).
Think of the (unfortunate) case in which tac1 on I_{1} instantiates l_{2}.

Then, if tac2 fails on I_{1} but has success on I_{2}, what is the expected semantics?

- for sure try (tac1; tac2) should have no effect on I_{1}
- but the system already displayed some progress on I_{1}
- and skipping tac1 on I_{1} may change the result of tac1 on I_{2}

The (right?) types for tactics

Matita 0.5 adopted a conservative type for tactics

- tac: goal $*$ status \rightarrow goal list $*$ status

Matita 1.0 (will) unifies the type of tactics and tacticals

- tac: goal list $*$ status \rightarrow goal list $*$ status

We then have

- focus: tactic \rightarrow goal \rightarrow old_tactic
- distribute: old_tactic \rightarrow tactic

Gain

- auto on a cluster of dependent goals
- high-level management commands (postpone, regroup, clusterize)
- eases the implementation of some declarative idioms

History
Input
Ambiguity support
Tinycals
UTF-8 support
Output
MathML \& friends
Proof rendering
GtkMathView
Graphs
Metadata
What's interesting about formal proofs?

UTF-8: input

Displaying UTF-8 is easy. What's hard is a comfortable input of UTF-8.

name	input	result
\backslash TeX	\backslash Rightarrow	\Rightarrow
	lalpha	α
Ligatures	$=>$	\Rightarrow
	$->$	\rightarrow
Alternatives	a	$\alpha \mathbf{a}$
	P	$\Pi \mathcal{P} \mathbb{P}$
Memory	x	last alternative for x you used

Demo: utf8.ma
demo

History
Input

```
Ambiguity support
Tinycals
UTF-8 support
```

Output
MathML \& friends
Proof rendering
GtkMathView
Graphs
Metadata
What's interesting about formal proofs?

MathML

Mathematical Markup Language (MathML) is an XML language for describing mathematical content and its presentation.

- (UTF-8) symbols
- 2-D notations
- Colors

2-D notations

$$
\begin{aligned}
& ? 5 \\
& \begin{array}{l}
a: \mathbf{N} \\
b: \mathbf{N} \\
n: \mathbf{N} \\
\hline(a+b)^{n}=\sum_{k<S_{n}}\binom{n}{k} \cdot a^{(n-k)} \cdot b^{k}
\end{array}
\end{aligned}
$$

OMDoc

OMDoc (Open Mathematical Documents) is a semantic markup format for mathematical documents.

OMDoc allows for mathematical expressions on three levels:
Object level formulae, written in Content MathML, OpenMath or similar
Statement level definitions, theorems, proofs, examples ...
Theory level A theory is a set of contextually related statements

History
Input

```
Ambiguity support
Tinycals
UTF-8 support
```

Output
MathML \& friends

Proof rendering

GtkMathView
 Graphs

Metadata
What's interesting about formal proofs?

Natural language output (and input) $(1 / 2)$

Proof times_n_Sm
Thesis:
$\forall n$: nat. $\forall m$: nat $n+n^{*} m=n^{*} S m$
(times_n_Sm)
Assume ninat
Assume mnat
we proceed by induction on n
to prove $n+n * m=n * S m$
Case $O \Rightarrow$
the thesis becomes $O+O^{*} m=O^{*} S \mathrm{~m}$
by (refl_eq _ _)
we conclude $O=O$
that is equivalent to $O+O * m=O^{*} S \mathrm{~m}$
Case S n1nat \Rightarrow
the thesis becomes S n1 + S n1* $m=S n 1^{*} S m$ by induction hypothesis we know
(H) $\mathrm{n} 1+\mathrm{n} 1^{*} m=\mathrm{n} 1^{*} S m$

Natural language output (and input) $(2 / 2)$

```
File Edit View
```



```
**0 eq_mult_zero_x_zero
Locate
Proof eq_mult_zero_x_zero
Thesis:
    \forall
(eq_mult_zero_x_zero)
    Assume Rring
    Assume x:R
        0\cdotx}=0+0\cdotx by (zero_neutral 
        = -x+x + 0.x by (opp_inverse _ _)
        = -x+(x+0\cdotx) by (plus_assoc _ _ _ _)
        = -x+(1\cdotx+0\cdotx) by (one_neutral_left _ _)
        = -x +(1+0)\cdotx by (mult_plus_distr_right _ _ _ _)
        =-x+(0+1)\cdotx by (plus_comm
        _ _ )
        = -x +1\cdotx by (zero_neutral
        _ _)
        = -x+x by (one_neutral_left _ _)
        = O by (opp_inverse _ _ )
        we conclude 0}0\cdot\textrm{x}=
    we conclude }\forallR:\mathrm{ ring.}\cdot\textrm{V}:R.0\cdotx=
```


Transformations

Demo: inline.ma
demo

History
Input

```
Ambiguity support
Tinycals
UTF-8 support
```

Output
MathML \& friends
Proof rendering

GtkMathView

Graphs
Metadata
What's interesting about formal proofs?

MathML widget

GtkMathView is a $\mathrm{C}++$ rendering engine for MathML. http://helm.cs.unibo.it/mml-widget/

Gives us, in addition to MathML rendering:

- Semantic selection
- Point and click
- Hypertext
- Alternative notations

Point and click

Hyperlink to cic:/matita/nat/minus/minus.con

Demo: natural deduction.ma

demo

History
Input

```
Ambiguity support
Tinycals
UTF-8 support
```

Output
MathML \& friends
Proof rendering
GtkMathView
Graphs

Metadata
What's interesting about formal proofs?

Directed graphs

Some data can be displayed by means of a directed graph:

- coercions
- dependencies between scripts
- dependencies between developments

Graphviz (dot) can generate "click-able" graphs

Demo: coercions.ma

demo

Non-directed graphs

"Equivalence" classes can be displayed by means of a graph:

- unification hints

Demo: hints.ma

demo

History

Input

```
Ambiguity support
Tinycals
UTF-8 support
```

Output
MathML \& friends
Proof rendering
GtkMathView
Graphs

Metadata
What's interesting about formal proofs?

Metadata (or machine understandable data)

- Last year I was hired by "mathematicians" to formalize their mathematics!
- They never asked: "Was my theorem OK?"
- But they asked me a lot of questions that Matita was (and still is) unable to answer to

Data

What can Matita do with proof terms?

- Search
- Dependencies
- . . . nothing more ...

Demo: deps-search.ma

demo

What's next?

What will be dropped/kept/improved in Matita 1.0?

- Improved: tactics, tinycals and proof language (all small step)
- Improved: script file format (richer, with hyperlinks)
- Dropped: proof rendering (plugin)
- Dropped: MathML (plugin?)
- Dropped: XML (as the primary storage format)
- Kept (re-implemented): semantic selection, proof by click
- Kept: graphs

Thanks

Thanks!

