
Matita’s User Interaction

Enrico Tassi

Microsoft Research-INRIA Joint Center

Journée ADT Interfaces — 27 October 2010 — Paris

History

Input
Ambiguity support
Tinycals
UTF-8 support

Output
MathML & friends
Proof rendering
GtkMathView
Graphs

Metadata
What’s interesting about formal proofs?

2

History

Matita was born from a rib of the MoWGLI project (Coq’s
library on the web)

I Web standards:
I XML for CIC terms
I MathML for content/presentation
I CicBrowser (for the library)

I Natural language presentation of proof terms

I Ambiguity manager

I Searching facilities

History

Input
Ambiguity support
Tinycals
UTF-8 support

Output
MathML & friends
Proof rendering
GtkMathView
Graphs

Metadata
What’s interesting about formal proofs?

Ambiguity manager

Operators and names can be overloaded. The intended
interpretation if chosen among the valid ones interactively.

User’s preferences are recorded in the script, and kept into
account when interpreting the following commands.

Ambiguity manager: errors
Multiple interpretation also means multiple errors:

I Error messages must be equipped with the interpretation
that generated them

I Spurious errors must be hidden
I Many notions of “spurious”
I The implemented one: located in a sub-formula that

admits a valid interpretation

History

Input
Ambiguity support
Tinycals
UTF-8 support

Output
MathML & friends
Proof rendering
GtkMathView
Graphs

Metadata
What’s interesting about formal proofs?

Tinycals: history
Original aim: make proof structuring/refactoring less painful.

� �
theorem associative Ztimes : associative Z Ztimes.
unfold associative .
intros .
elim x.
simplify .
reflexivity .

elim y.
simplify .
reflexivity .

elim z.
simplify .
reflexivity .

change with
(pos (pred ((S (pred ((S n) ∗ (S n1)))) ∗ (S n2))) =
pos (pred ((S n) ∗ (S (pred ((S n1) ∗ (S n2))))))).
rewrite < S pred.
rewrite < S pred.
rewrite < assoc times.
reflexivity .

apply lt O times S S .
apply lt O times S S .
change with
(neg (pred ((S (pred ((S n) ∗ (S n1)))) ∗ (S n2))) =
neg (pred ((S n) ∗ (S (pred ((S n1) ∗ (S n2))))))).
rewrite < S pred.
rewrite < S pred.
rewrite < assoc times.
reflexivity .� �

� �
apply lt O times S S .
apply lt O times S S .
elim z.
simplify .
reflexivity .

change with
(neg (pred ((S (pred ((S n) ∗ (S n1)))) ∗ (S n2))) =
neg (pred ((S n) ∗ (S (pred ((S n1) ∗ (S n2))))))).
rewrite < S pred.
rewrite < S pred.
rewrite < assoc times.
reflexivity .

apply lt O times S S .
apply lt O times S S .
change with
(pos (pred ((S (pred ((S n) ∗ (S n1)))) ∗ (S n2))) =
pos(pred ((S n) ∗ (S (pred ((S n1) ∗ (S n2))))))).
rewrite < S pred.
rewrite < S pred.
rewrite < assoc times.
reflexivity .

apply lt O times S S .
apply lt O times S S .
elim y.
simplify .
reflexivity .

elim z.
. . .� �

Tinycals: history
Original aim: make proof structuring/refactoring less painful.� �

theorem associative Ztimes : associative Z Ztimes.
unfold associative .
intros .
elim x.
simplify .
reflexivity .

elim y.
simplify .
reflexivity .

elim z.
simplify .
reflexivity .

change with
(pos (pred ((S (pred ((S n) ∗ (S n1)))) ∗ (S n2))) =
pos (pred ((S n) ∗ (S (pred ((S n1) ∗ (S n2))))))).
rewrite < S pred.
rewrite < S pred.
rewrite < assoc times.
reflexivity .

apply lt O times S S .
apply lt O times S S .
change with
(neg (pred ((S (pred ((S n) ∗ (S n1)))) ∗ (S n2))) =
neg (pred ((S n) ∗ (S (pred ((S n1) ∗ (S n2))))))).
rewrite < S pred.
rewrite < S pred.
rewrite < assoc times.
reflexivity .� �

� �
apply lt O times S S .
apply lt O times S S .
elim z.
simplify .
reflexivity .

change with
(neg (pred ((S (pred ((S n) ∗ (S n1)))) ∗ (S n2))) =
neg (pred ((S n) ∗ (S (pred ((S n1) ∗ (S n2))))))).
rewrite < S pred.
rewrite < S pred.
rewrite < assoc times.
reflexivity .

apply lt O times S S .
apply lt O times S S .
change with
(pos (pred ((S (pred ((S n) ∗ (S n1)))) ∗ (S n2))) =
pos(pred ((S n) ∗ (S (pred ((S n1) ∗ (S n2))))))).
rewrite < S pred.
rewrite < S pred.
rewrite < assoc times.
reflexivity .

apply lt O times S S .
apply lt O times S S .
elim y.
simplify .
reflexivity .

elim z.
. . .� �

Tinycals: what about indentation?
Indentation looks like a cheap solution� �
theorem associative Ztimes : associative Z Ztimes.
unfold associative . intros .elim x.

simplify . reflexivity .
elim y.

simplify . reflexivity .
elim z.

simplify . reflexivity .
change with
(pos (pred ((S (pred ((S n) ∗ (S n1)))) ∗ (S n2))) =
pos (pred ((S n) ∗ (S (pred ((S n1) ∗ (S n2))))))).

rewrite < S pred.rewrite < S pred.rewrite < assoc times. reflexivity .
apply lt O times S S .apply lt O times S S .

change with
(neg (pred ((S (pred ((S n) ∗ (S n1)))) ∗ (S n2))) =
neg (pred ((S n) ∗ (S (pred ((S n1) ∗ (S n2))))))).

rewrite < S pred.rewrite < S pred.rewrite < assoc times. reflexivity .
apply lt O times S S .apply lt O times S S .

elim z.
simplify . reflexivity .
change with
(neg (pred ((S (pred ((S n) ∗ (S n1)))) ∗ (S n2))) =
neg (pred ((S n) ∗ (S (pred ((S n1) ∗ (S n2))))))).

rewrite < S pred.rewrite < S pred.rewrite < assoc times. reflexivity .
apply lt O times S S .apply lt O times S S .

change with
(pos (pred ((S (pred ((S n) ∗ (S n1)))) ∗ (S n2))) =
pos(pred ((S n) ∗ (S (pred ((S n1) ∗ (S n2))))))).

rewrite < S pred.rewrite < S pred.rewrite < assoc times. reflexivity .
apply lt O times S S .apply lt O times S S .

elim y.
. . .� �

Tinycals
Indentation only “suggests” the structure of a proof

I but it’s not checked by the system

Why there were no tacticals?

I Hard to build a huge proof in one go with the
executed=locked interaction style

I We are lazy, refactoring costs time

I Read a proof made with tacticals is harder

The trick

I De-structured syntax
I NO: 〈T 〉 ::= “[” 〈T 〉 “” 〈T 〉 “]” | . . .
I YES: 〈T 〉 ::= “[” | “” | “]” | . . .

I Small step semantics
I “balancing” has to be managed by the semantics, since

the grammar is now weaker

Tinycals
Indentation only “suggests” the structure of a proof

I but it’s not checked by the system

Why there were no tacticals?

I Hard to build a huge proof in one go with the
executed=locked interaction style

I We are lazy, refactoring costs time

I Read a proof made with tacticals is harder

The trick

I De-structured syntax
I NO: 〈T 〉 ::= “[” 〈T 〉 “” 〈T 〉 “]” | . . .
I YES: 〈T 〉 ::= “[” | “” | “]” | . . .

I Small step semantics
I “balancing” has to be managed by the semantics, since

the grammar is now weaker

Tinycals
Indentation only “suggests” the structure of a proof

I but it’s not checked by the system

Why there were no tacticals?

I Hard to build a huge proof in one go with the
executed=locked interaction style

I We are lazy, refactoring costs time

I Read a proof made with tacticals is harder

The trick

I De-structured syntax
I NO: 〈T 〉 ::= “[” 〈T 〉 “” 〈T 〉 “]” | . . .
I YES: 〈T 〉 ::= “[” | “” | “]” | . . .

I Small step semantics
I “balancing” has to be managed by the semantics, since

the grammar is now weaker

Tinycals: syntax

〈S〉 ::=
〈B〉

| “.”
| “;”

| “[”
| “ ”
| i1,. . ., in“:”
| “ ∗ :”
| “skip”
| “]”

| “focus” [g1;· · ·; gn]
| “done”

〈L〉 ::=
〈S〉

| 〈S〉 〈S〉

〈B〉 ::=
〈T 〉

| “try” 〈B〉
| “repeat” 〈B〉
| 〈B〉“;”〈B〉
| 〈B〉“;[”〈B〉“ ” . . . “ ”〈B〉“]”

〈T 〉 ::= “apply ′′

| “rewrite ′′

| . . .

Tinycals: semantics (1/6)

type ξ (∗ proof status ∗)
type goal
val apply tac : 〈B〉 → ξ → goal → ξ × goal list× goal list

Tinycals: semantics (2/6)

task = int× (O goal | C goal) (task)
Γ = task list (context)
τ = task list (“todo” list)
κ = task list (dot’s continuation)

tag = B | F (stack level tag)
stack = (Γ× τ × κ× tag) list (context stack)
code = 〈S〉 list (statements)

status = code × ξ × stack (evaluation status)

Tinycals: semantics (3/6)

〈〈B〉 ::c , ξ, 〈Γ, τ, κ, t〉 ::S〉 −→ 〈c , ξn, S ′〉
where [g1;· · ·; gn] = get O goals in tasks list(Γ)

and

〈ξ0,G o

0 ,G
c
0 〉 = 〈ξ, [], []〉

〈ξi+1,G
o
i+1,G

c
i+1〉 = 〈ξi ,G o

i ,G
c
i 〉 gi+1 ∈ G c

i

〈ξi+1,G
o
i+1,G

c
i+1〉 = 〈ξ′, (G o

i \ G c) ∪ G o ,G c
i ∪ G c〉 6∈

where 〈ξ′,G o ,G c〉 = apply tac(〈B〉, ξi , gi+1)

and S ′ = 〈Γ′, τ ′, κ′, t〉 ::close tasks(G c
n , S)

and Γ′ = mark as handled(G o
n)

and τ ′ = remove tasks(G c
n , τ)

and κ′ = remove tasks(G c
n , κ)

〈“;”::c , ξ, S〉 −→ 〈c , ξ, S〉

Tinycals: semantics (4/6)

〈“skip”::c , ξ, 〈Γ, τ, κ, t〉 ::S〉 −→ 〈c , ξ, S ′〉
where Γ = [〈j1, C g1〉; · · · ; 〈jn, C gn〉] n ≥ 1

and G c = [g1;· · ·; gn]

and S ′ = 〈[], remove tasks(G c , τ), remove tasks(G c , κ), t〉
:: close tasks(G c , S)

〈“.”::c , ξ, 〈Γ, τ, κ, t〉 ::S〉 −→ 〈c , ξ, 〈[l1], τ, [l2;· · ·; ln] ∪ κ, t〉 ::S〉 n ≥ 1

where get O tasks(Γ) = [l1;· · ·; ln]

〈“.”::c , ξ, 〈Γ, τ, l ::κ, t〉 ::S〉 −→ 〈c , ξ, 〈[l], τ, κ, t〉 ::S〉
where get O tasks(Γ) = []

Tinycals: semantics (5/6)

〈“[”::c , ξ, 〈[l1;· · ·; ln], τ, κ, t〉 ::S〉 −→ 〈c , ξ, S ′〉 n ≥ 2

when renumber branches([l1;· · ·; ln]) = [l ′1; · · · ; l ′n]

and S ′ = 〈[l ′1], [], [], B〉 ::〈[l ′2; · · · ; l ′n], τ, κ, t〉 ::S

〈“ ”::c , ξ, 〈Γ, τ, κ, B〉 ::〈[l1;· · ·; ln], τ ′, κ′, t ′〉 ::S〉 −→ 〈c , ξ, S ′〉 n ≥ 1

where S ′ = 〈[l1], τ ∪ get O tasks(Γ) ∪ κ, [], B〉 ::〈[l2;· · ·; ln], τ ′, κ′, t ′〉 ::S

〈i1,. . ., in“:”::c , ξ, 〈[l], τ, [], B〉 ::〈Γ′, τ ′, κ′, t ′〉 ::S〉 −→ 〈c , ξ, S ′〉
where unhandled(l)

and ∀j = 1 . . . n, ∃lj = 〈j , sj〉, lj ∈ l ::Γ′

and S ′ = 〈[l1; · · · ; ln], τ, [], B〉 ::〈(l ::Γ′) \ [l1; · · · ; ln], τ ′, κ′, t ′〉 ::S

Tinycals: semantics (6/6)

〈“ ∗ :”::c , ξ, 〈[l], τ, [], B〉 ::〈Γ′, τ ′, κ′, t ′〉 ::S〉 −→ 〈c , ξ, S ′〉
where unhandled(l)

and S ′ = 〈l ::Γ′, τ, [], B〉 ::〈[], τ ′ ∪ get O tasks(Γ) ∪ κ, κ′, t ′〉 ::S

〈“]”::c , ξ, 〈Γ, τ, κ, B〉 ::〈Γ′, τ ′, κ′, t ′〉 ::S〉 −→ 〈c , ξ, S ′〉
where S ′ = 〈τ ∪ get O tasks(Γ) ∪ Γ′ ∪ κ, τ ′, κ′, t ′〉 ::S

〈“focus” [g1;· · ·; gn] ::c , ξ, 〈Γ, τ, κ, t〉 ::S〉 −→ 〈c , ξ, S ′〉
where gi ∈ get O goals in status(S)

and S ′ = 〈mark as handled([g1; · · · ; gn]), [], [], F〉
::close tasks(〈Γ, τ, κ, t〉 ::S)

〈“done”::c , ξ, 〈[], [], [], F〉 ::S〉 −→ 〈c , ξ, S〉

Demo: property sigma.ma

demo

What about try, repeat, . . .

Consider Γ = [l1; l2] and the command try (tac1; tac2).

Think of the (unfortunate) case in which tac1 on l1
instantiates l2.

Then, if tac2 fails on l1 but has success on l2, what is the
expected semantics?

I for sure try (tac1; tac2) should have no effect on l1
I but the system already displayed some progress on l1
I and skipping tac1 on l1 may change the result of tac1 on l2

The (right?) types for tactics

Matita 0.5 adopted a conservative type for tactics

I tac : goal ∗ status → goal list ∗ status

Matita 1.0 (will) unifies the type of tactics and tacticals

I tac : goal list ∗ status → goal list ∗ status

We then have

I focus : tactic → goal → old tactic

I distribute : old tactic → tactic

Gain

I auto on a cluster of dependent goals

I high-level management commands (postpone, regroup,
clusterize)

I eases the implementation of some declarative idioms

History

Input
Ambiguity support
Tinycals
UTF-8 support

Output
MathML & friends
Proof rendering
GtkMathView
Graphs

Metadata
What’s interesting about formal proofs?

UTF-8: input

Displaying UTF-8 is easy. What’s hard is a comfortable input
of UTF-8.

name input result

\TeX \Rightarrow ⇒
\alpha α

Ligatures => ⇒
−> →

Alternatives a α a
P Π P P

Memory x last alternative for x you used

Demo: utf8.ma

demo

History

Input
Ambiguity support
Tinycals
UTF-8 support

Output
MathML & friends
Proof rendering
GtkMathView
Graphs

Metadata
What’s interesting about formal proofs?

MathML

Mathematical Markup Language (MathML) is an XML
language for describing mathematical content and its
presentation.

I (UTF-8) symbols

I 2-D notations

I Colors

2-D notations

OMDoc

OMDoc (Open Mathematical Documents) is a semantic
markup format for mathematical documents.

OMDoc allows for mathematical expressions on three levels:

Object level formulae, written in Content MathML,
OpenMath or similar

Statement level definitions, theorems, proofs, examples . . .

Theory level A theory is a set of contextually related
statements

History

Input
Ambiguity support
Tinycals
UTF-8 support

Output
MathML & friends
Proof rendering
GtkMathView
Graphs

Metadata
What’s interesting about formal proofs?

Natural language output (and input) (1/2)

Natural language output (and input) (2/2)

Transformations

XML CIC OMDoc
MathML
+ boxes

Declarative
language

Procedural
language

Demo: inline.ma

demo

History

Input
Ambiguity support
Tinycals
UTF-8 support

Output
MathML & friends
Proof rendering
GtkMathView
Graphs

Metadata
What’s interesting about formal proofs?

MathML widget

GtkMathView is a C++ rendering engine for MathML.
http://helm.cs.unibo.it/mml-widget/

Gives us, in addition to MathML rendering:

I Semantic selection

I Point and click

I Hypertext

I Alternative notations

http://helm.cs.unibo.it/mml-widget/

Point and click

Demo: natural deduction.ma

demo

History

Input
Ambiguity support
Tinycals
UTF-8 support

Output
MathML & friends
Proof rendering
GtkMathView
Graphs

Metadata
What’s interesting about formal proofs?

Directed graphs

Some data can be displayed by means of a directed graph:

I coercions

I dependencies between scripts

I dependencies between developments

Graphviz (dot) can generate “click-able” graphs

Demo: coercions.ma

demo

Non-directed graphs

“Equivalence” classes can be displayed by means of a graph:

I unification hints

Demo: hints.ma

demo

History

Input
Ambiguity support
Tinycals
UTF-8 support

Output
MathML & friends
Proof rendering
GtkMathView
Graphs

Metadata
What’s interesting about formal proofs?

Metadata (or machine understandable data)

I Last year I was hired by “mathematicians” to formalize
their mathematics!

I They never asked: “Was my theorem OK?”

I But they asked me a lot of questions that Matita was
(and still is) unable to answer to

Data

What can Matita do with proof terms?

I Search

I Dependencies

I . . . nothing more . . .

Demo: deps-search.ma

demo

What’s next?

What will be dropped/kept/improved in Matita 1.0?

I Improved: tactics, tinycals and proof language (all small
step)

I Improved: script file format (richer, with hyperlinks)

I Dropped: proof rendering (plugin)

I Dropped: MathML (plugin?)

I Dropped: XML (as the primary storage format)

I Kept (re-implemented): semantic selection, proof by click

I Kept: graphs

Thanks

Thanks!

	History
	Input
	Ambiguity support
	Tinycals
	UTF-8 support

	Output
	MathML & friends
	Proof rendering
	GtkMathView
	Graphs

	Metadata
	What's interesting about formal proofs?

