Chapter 11 The SSReflect proof language
 11.1 Introduction
 11.2 Usage
 11.3 Gallina extensions
 11.4 Definitions
 11.5 Basic tactics
 11.6 Control flow
 11.7 Rewriting
 11.8 Contextual patterns
 11.9 Views and reflection
 11.10 SSReflect searching tool
 11.11 Synopsis and Index
Georges Gonthier, Assia Mahboubi, Enrico Tassi
11.1 Introduction
This chapter describes a set of tactics known as SSReflect originally designed to provide support for the socalled small scale reflection proof methodology. Despite the original purpose this set of tactic is of general interest and is available in Coq starting from version 8.7.
SSReflect was developed independently of the tactics described in Chapter 8. Indeed the scope of the tactics part of SSReflect largely overlaps with the standard set of tactics. Eventually the overlap will be reduced in future releases of Coq.
Proofs written in SSReflect typically look quite different from the ones written using only tactics as per Chapter 8. We try to summarise here the most “visible” ones in order to help the reader already accustomed to the tactics described in Chapter 8 to read this chapter.
The first difference between the tactics described in this chapter and the tactics described in Chapter 8 is the way hypotheses are managed (we call this bookkeeping). In Chapter 8 the most common approach is to avoid moving explicitly hypotheses back and forth between the context and the conclusion of the goal. On the contrary in SSReflect all bookkeeping is performed on the conclusion of the goal, using for that purpose a couple of syntactic constructions behaving similar to tacticals (and often named as such in this chapter). The : tactical moves hypotheses from the context to the conclusion, while => moves hypotheses from the conclusion to the context, and in moves back and forth an hypothesis from the context to the conclusion for the time of applying an action to it.
While naming hypotheses is commonly done by means of an as clause in the basic model of Chapter 8, it is here to => that this task is devoted. As tactics leave new assumptions in the conclusion, and are often followed by => to explicitly name them. While generalizing the goal is normally not explicitly needed in Chapter 8, it is an explicit operation performed by :.
Beside the difference of bookkeeping model, this chapter includes specific tactics which have no explicit counterpart in Chapter 8 such as tactics to mix forward steps and generalizations as generally have or without loss.
SSReflect adopts the point of view that rewriting, definition expansion and partial evaluation participate all to a same concept of rewriting a goal in a larger sense. As such, all these functionalities are provided by the rewrite tactic.
SSReflect includes a little language of patterns to select subterms in tactics or tacticals where it matters. Its most notable application is in the rewrite tactic, where patterns are used to specify where the rewriting step has to take place.
Finally, SSReflect supports socalled reflection steps, typically allowing to switch back and forth between the computational view and logical view of a concept.
To conclude it is worth mentioning that SSReflect tactics can be mixed with non SSReflect tactics in the same proof, or in the same Ltac expression. The few exceptions to this statement are described in section 11.2.2.
Acknowledgments
The authors would like to thank Frédéric Blanqui, François Pottier and Laurence Rideau for their comments and suggestions.
11.2 Usage
11.2.1 Getting started
To be available, the tactics presented in this manual need the following minimal set of libraries to loaded: ssreflect.v, ssrfun.v and ssrbool.v. Moreover, these tactics come with a methodology specific to the authors of Ssreflect and which requires a few options to be set in a different way than in their default way. All in all, this corresponds to working in the following context:
11.2.2 Compatibility issues
Requiring the above modules creates an environment which is mostly compatible with the rest of Coq, up to a few discrepancies:
 New keywords (is) might clash with variable, constant, tactic or tactical names, or with quasikeywords in tactic or vernacular notations.
 New tactic(al)s names (last, done, have, suffices, suff, without loss, wlog, congr, unlock) might clash with user tactic names.
 Identifiers with both leading and trailing _, such as _x_, are reserved by SSReflect and cannot appear in scripts.
 The extensions to the rewrite tactic are partly
incompatible with those available in current versions of Coq;
in particular:
rewrite .. in (type of k) or
rewrite .. in * or any other variant of rewrite will not work, and the SSReflect syntax and semantics for occurrence selection and rule chaining is different.Use an explicit rewrite direction (rewrite < … or rewrite > …) to access the Coq rewrite tactic.
 New symbols (//, /=, //=) might clash with adjacent existing symbols (e.g., ’//’) instead of ’/”/’). This can be avoided by inserting white spaces.
 New constant and theorem names might clash with the user
theory. This can be avoided by not importing all of SSReflect:
From Coq Require ssreflect. Import ssreflect.SsrSyntax.Note that the full syntax of SSReflect’s rewrite and reserved identifiers are enabled only if the ssreflect module has been required and if SsrSyntax has been imported. Thus a file that requires (without importing) ssreflect and imports SsrSyntax, can be required and imported without automatically enabling SSReflect’s extended rewrite syntax and reserved identifiers.
 Some user notations (in particular, defining an infix ’;’) might interfere with the "open term", parenthesis free, syntax of tactics such as have, set and pose.
 The generalization of if statements to nonBoolean
conditions is turned off by SSReflect, because it is mostly subsumed by
Coercion to bool of the sumXXX types (declared in
ssrfun.v)
and the if term is pattern then term else term construct (see
11.3.2). To use the generalized form, turn off the SSReflect
Boolean if notation using the command:
Close Scope boolean_if_scope.
 The following two options can be unset to disable the
incompatible rewrite syntax and allow
reserved identifiers to appear in scripts.
Unset SsrRewrite. Unset SsrIdents.
11.3 Gallina extensions
Smallscale reflection makes an extensive use of the programming subset of Gallina, Coq’s logical specification language. This subset is quite suited to the description of functions on representations, because it closely follows the wellestablished design of the ML programming language. The SSReflect extension provides three additions to Gallina, for pattern assignment, pattern testing, and polymorphism; these mitigate minor but annoying discrepancies between Gallina and ML.
11.3.1 Pattern assignment
The SSReflect extension provides the following construct for irrefutable pattern matching, that is, destructuring assignment:
let: pattern := term_{1} in term_{2}
Note the colon ‘:’ after the let keyword, which avoids any ambiguity with a function definition or Coq’s basic destructuring let. The let: construct differs from the latter in that

The pattern can be nested (deep pattern matching), in
particular, this allows expression of the form:
let: exist (x, y) p_xy := Hp in ...
 The destructured constructor is explicitly given in the
pattern, and is used for type inference, e.g.,
Let f u := let: (m, n) := u in m + n.using a colon let:, infers f : nat * nat > nat, whereasLet f u := let (m, n) := u in m + n.with a usual let, requires an extra type annotation.
The let: construct is just (more legible) notation for the primitive Gallina expression
The SSReflect destructuring assignment supports all the dependent match annotations; the full syntax is
where pattern_{2} is a type pattern and term_{1} and term_{2} are types.
When the as and return are both present, then ident is bound in both the type term_{2} and the expression term_{3}; variables in the optional type pattern pattern_{2} are bound only in the type term_{2}, and other variables in pattern_{1} are bound only in the expression term_{3}, however.
11.3.2 Pattern conditional
The following construct can be used for a refutable pattern matching, that is, pattern testing:
Although this construct is not strictly ML (it does exits in variants such as the pattern calculus or the ρcalculus), it turns out to be very convenient for writing functions on representations, because most such functions manipulate simple datatypes such as Peano integers, options, lists, or binary trees, and the pattern conditional above is almost always the right construct for analyzing such simple types. For example, the null and all list function(al)s can be defined as follows:
The pattern conditional also provides a notation for destructuring
assignment with a refutable pattern, adapted to the pure functional
setting of Gallina, which lacks a
Match_Failure exception.
Like let: above, the if…is construct is just (more legible) notation for the primitive Gallina expression:
Similarly, it will always be displayed as the expansion of this form in terms of primitive match expressions (where the default expression term_{3} may be replicated).
Explicit pattern testing also largely subsumes the generalization of the if construct to all binary datatypes; compare:
and:
The latter appears to be marginally shorter, but it is quite ambiguous, and indeed often requires an explicit annotation term : {_}+{_} to typecheck, which evens the character count.
Therefore, SSReflect restricts by default the condition of a plain if construct to the standard bool type; this avoids spurious type annotations, e.g., in:
As pointed out in section 11.2.2, this restriction can be removed with the command:
Like let: above, the if term is pattern else term construct supports the dependent match annotations:
As in let: the variable ident (and those in the type pattern pattern_{2}) are bound in term_{2}; ident is also bound in term_{3} (but not in term_{4}), while the variables in pattern_{1} are bound only in term_{3}.
Another variant allows to treat the else case first:
Note that pattern_{1} eventually binds variables in term_{3} and not term_{2}.
11.3.3 Parametric polymorphism
Unlike ML, polymorphism in core Gallina is explicit: the type parameters of polymorphic functions must be declared explicitly, and supplied at each point of use. However, Coq provides two features to suppress redundant parameters:
 Sections are used to provide (possibly implicit) parameters for a set of definitions.
 Implicit arguments declarations are used to tell Coq to use type inference to deduce some parameters from the context at each point of call.
The combination of these features provides a fairly good emulation of MLstyle polymorphism, but unfortunately this emulation breaks down for higherorder programming. Implicit arguments are indeed not inferred at all points of use, but only at points of call, leading to expressions such as
Unfortunately, such higherorder expressions are quite frequent in representation functions, especially those which use Coq’s Structures to emulate Haskell type classes.
Therefore, SSReflect provides a variant of Coq’s implicit argument declaration, which causes Coq to fill in some implicit parameters at each point of use, e.g., the above definition can be written:
Better yet, it can be omitted entirely, since all_null s isn’t much of an improvement over all null s.
The syntax of the new declaration is
Let us denote _{1} … c_{n} the list of identifiers given to a Prenex Implicits command. The command checks that each c_{i} is the name of a functional constant, whose implicit arguments are prenex, i.e., the first n_{i} > 0 arguments of c_{i} are implicit; then it assigns Maximal Implicit status to these arguments.
As these prenex implicit arguments are ubiquitous and have often large display strings, it is strongly recommended to change the default display settings of Coq so that they are not printed (except after a Set Printing All command). All SSReflect library files thus start with the incantation
11.3.4 Anonymous arguments
When in a definition, the type of a certain argument is mandatory, but not its name, one usually use “arrow” abstractions for prenex arguments, or the (_ : term) syntax for inner arguments. In SSReflect, the latter can be replaced by the open syntax ‘of term’ or (equivalently) ‘term’, which are both syntactically equivalent to a (_ : term) expression.
For instance, the usual twocontrsuctor polymorphic type list, i.e. the one of the standard List library, can be defined by the following declaration:
11.3.5 Wildcards
The terms passed as arguments to SSReflect tactics can contain holes, materialized by wildcards _. Since SSReflect allows a more powerful form of type inference for these arguments, it enhances the possibilities of using such wildcards. These holes are in particular used as a convenient shorthand for abstractions, especially in local definitions or type expressions.
Wildcards may be interpreted as abstractions (see for example sections 11.4.1 and 11.6.6), or their content can be inferred from the whole context of the goal (see for example section 11.4.2).
11.4 Definitions
11.4.1 Definitions
The pose tactic allows to add a defined constant to a proof context. SSReflect generalizes this tactic in several ways. In particular, the SSReflect pose tactic supports open syntax: the body of the definition does not need surrounding parentheses. For instance:
is a valid tactic expression.
The pose tactic is also improved for the local definition of higher order terms. Local definitions of functions can use the same syntax as global ones. The tactic:
adds to the context the defined constant:
The SSReflect pose tactic also supports (co)fixpoints, by providing the local counterpart of the Fixpoint f := … and CoFixpoint f := … constructs. For instance, the following tactic:
defines a local fixpoint f, which mimics the standard plus operation on natural numbers.
Similarly, local cofixpoints can be defined by a tactic of the form:
The possibility to include wildcards in the body of the definitions offers a smooth way of defining local abstractions. The type of “holes” is guessed by type inference, and the holes are abstracted. For instance the tactic:
is shorthand for:
When the local definition of a function involves both arguments and holes, hole abstractions appear first. For instance, the tactic:
is shorthand for:
The interaction of the pose tactic with the interpretation of implicit arguments results in a powerful and concise syntax for local definitions involving dependent types. For instance, the tactic:
adds to the context the local definition:
The generalization of wildcards makes the use of the pose tactic resemble MLlike definitions of polymorphic functions.
11.4.2 Abbreviations
The SSReflect set tactic performs abbreviations: it introduces a defined constant for a subterm appearing in the goal and/or in the context.
SSReflect extends the set tactic by supplying:
 an open syntax, similarly to the pose tactic;
 a more aggressive matching algorithm;
 an improved interpretation of wildcards, taking advantage of the matching algorithm;
 an improved occurrence selection mechanism allowing to abstract only selected occurrences of a term.
The general syntax of this tactic is
where:
 ident is a fresh identifier chosen by the user.
 term_{1} is an optional type annotation. The type annotation term_{1} can be given in open syntax (no surrounding parentheses). If no occswitch (described hereafter) is present, it is also the case for term_{2}. On the other hand, in presence of occswitch, parentheses surrounding term_{2} are mandatory.
 In the occurrence switch occswitch, if the first element of the list is a natural, this element should be a number, and not an Ltac variable. The empty list {} is not interpreted as a valid occurrence switch.
The tactic:
transforms the goal f x + f x = f x into t + t = t, adding t := f x to the context, and the tactic:
transforms it into f x + t = f x, adding t := f x to the context.
The type annotation term_{1} may contain wildcards, which will be filled with the appropriate value by the matching process.
The tactic first tries to find a subterm of the goal matching term_{2} (and its type term_{1}), and stops at the first subterm it finds. Then the occurrences of this subterm selected by the optional occswitch are replaced by ident and a definition ident := term is added to the context. If no occswitch is present, then all the occurrences are abstracted.
Matching
The matching algorithm compares a pattern term with a subterm of the goal by comparing their heads and then pairwise unifying their arguments (modulo conversion). Head symbols match under the following conditions:
 If the head of term is a constant, then it should be syntactically equal to the head symbol of the subterm.
 If this head is a projection of a canonical structure, then canonical structure equations are used for the matching.
 If the head of term is not a constant, the subterm should have the same structure (λ abstraction, let…in structure …).
 If the head of term is a hole, the subterm should have
at least as many arguments as term. For instance the tactic:
set t := _ x.transforms the goal
x
+
y
=
z
into t y = z and adds t := plus x : nat > nat to the context.  In the special case where term is of the form
(let f := t_{0} in f) t_{1}… t_{n},
then the pattern term is treated
as (_ t_{1}… t_{n}). For each subterm in
the goal having the form (A u_{1}… u_{n′}) with n′ ≥ n, the
matching algorithm successively tries to find the largest
partial application (A u_{1}… u_{i′}) convertible to the head
t_{0} of term. For instance the following tactic:
set t := (let g y z := y.+1 + z in g) 2.transforms the goal(let f x y z := x + y + z in f 1) 2 3 = 6.into t 3 = 6 and adds the local definition of t to the context.
Moreover:

Multiple holes in term are treated as independent
placeholders. For instance, the tactic:
set t := _ + _.transforms the goal x + y = z into t = z and pushes t := x + y : nat in the context.
 The type of the subterm matched should fit the type (possibly casted by some type annotations) of the pattern term.
 The replacement of the subterm found by the instantiated pattern
should not capture variables, hence the following script:
Goal forall x : nat, x + 1 = 0. set u := _ + 1.raises an error message, since x is bound in the goal.
 Typeclass inference should fill in any residual hole, but matching should never assign a value to a global existential variable.
Occurrence selection
SSReflect provides a generic syntax for the selection of occurrences by their position indexes. These occurrence switches are shared by all SSReflect tactics which require control on subterm selection like rewriting, generalization, …
An occurrence switch can be:

A list { natural^{*} } of occurrences affected by the
tactic.
For instance, the tactic:
set x := {1 3}(f 2).transforms the goal f 2 + f 8 = f 2 + f 2 into x + f 8 = f 2 + x, and adds the abbreviation x := f 2 in the context. Notice that some occurrences of a given term may be hidden to the user, for example because of a notation. The vernacular Set Printing All command displays all these hidden occurrences and should be used to find the correct coding of the occurrences to be selected^{1}. For instance, the following script:Notation "a < b":= (le (S a) b). Goal forall x y, x < y > S x < S y. intros x y; set t := S x.generates the goal t <= y > t < S y since x < y is now a notation for S x <= y.
 A list {natural^{+}}. This is equivalent to { natural^{+} } but the list should start with a number, and not with an Ltac variable.
 A list {natural^{*}} of occurrences not to be
affected by the tactic. For instance, the tactic:
set x := {2}(f 2).behaves likeset x := {1 3}(f 2).on the goal
f
2 +
f
8 =
f
2 +
f
2
which has three occurrences of the the term f 2  In particular, the switch {+} selects all the occurrences. This switch is useful to turn off the default behavior of a tactic which automatically clears some assumptions (see section 11.5.3 for instance).
 The switch {} imposes that no occurrences of the
term should be affected by the tactic. The tactic:
set x := {}(f 2).leaves the goal unchanged and adds the definition x := f 2 to the context. This kind of tactic may be used to take advantage of the power of the matching algorithm in a local definition, instead of copying large terms by hand.
It is important to remember that matching precedes occurrence selection, hence the tactic:
transforms the goal x + y = x + y + z into x + y = a + z
and fails on the goal
(x + y) + (z + z) = z + z with the error message:
11.4.3 Localization
It is possible to define an abbreviation for a term appearing in the context of a goal thanks to the in tactical.
A tactic of the form:
introduces a defined constant called x in the context, and folds it in the facts fact_{1} … fact_{n} The body of x is the first subterm matching term in fact_{1} … fact_{n}.
A tactic of the form:
matches term and then folds x similarly in fact_{1} … fact_{n}, but also folds x in the goal.
A goal x
+
t
= 4
, whose context contains Hx : x = 3, is left
unchanged by the tactic:
but the context is extended with the definition z := 3 and Hx becomes Hx : x = z. On the same goal and context, the tactic:
will moreover change the goal into x
+
t
=
S
z
. Indeed, remember
that 4 is just a notation for (S 3).
The use of the in tactical is not limited to the localization of abbreviations: for a complete description of the in tactical, see section 11.5.1.
11.5 Basic tactics
A sizable fraction of proof scripts consists of steps that do not "prove" anything new, but instead perform menial bookkeeping tasks such as selecting the names of constants and assumptions or splitting conjuncts. Although they are logically trivial, bookkeeping steps are extremely important because they define the structure of the dataflow of a proof script. This is especially true for reflectionbased proofs, which often involve large numbers of constants and assumptions. Good bookkeeping consists in always explicitly declaring (i.e., naming) all new constants and assumptions in the script, and systematically pruning irrelevant constants and assumptions in the context. This is essential in the context of an interactive development environment (IDE), because it facilitates navigating the proof, allowing to instantly "jump back" to the point at which a questionable assumption was added, and to find relevant assumptions by browsing the pruned context. While novice or casual Coq users may find the automatic name selection feature convenient, the usage of such a feature severely undermines the readability and maintainability of proof scripts, much like automatic variable declaration in programming languages. The SSReflect tactics are therefore designed to support precise bookkeeping and to eliminate name generation heuristics. The bookkeeping features of SSReflect are implemented as tacticals (or pseudotacticals), shared across most SSReflect tactics, and thus form the foundation of the SSReflect proof language.
11.5.1 Bookkeeping
During the course of a proof Coq always present the user with a sequent whose general form is

The goal to be proved appears below the double line; above the line is the context of the sequent, a set of declarations of constants c_{i}, defined constants d_{i}, and facts F_{k} that can be used to prove the goal (usually, T_{i}, T_{j} : Type and P_{k} : Prop). The various kinds of declarations can come in any order. The top part of the context consists of declarations produced by the Section commands Variable, Let, and Hypothesis. This section context is never affected by the SSReflect tactics: they only operate on the lower part — the proof context. As in the figure above, the goal often decomposes into a series of (universally) quantified variables (x_{ℓ} : T_{ℓ}), local definitions let y_{m} := b_{m} in, and assumptions P_{n} >, and a conclusion C (as in the context, variables, definitions, and assumptions can appear in any order). The conclusion is what actually needs to be proved — the rest of the goal can be seen as a part of the proof context that happens to be “below the line”.
However, although they are logically equivalent, there are fundamental differences between constants and facts on the one hand, and variables and assumptions on the others. Constants and facts are unordered, but named explicitly in the proof text; variables and assumptions are ordered, but unnamed: the display names of variables may change at any time because of αconversion.
Similarly, basic deductive steps such as apply can only operate on the goal because the Gallina terms that control their action (e.g., the type of the lemma used by apply) only provide unnamed bound variables.^{2} Since the proof script can only refer directly to the context, it must constantly shift declarations from the goal to the context and conversely in between deductive steps.
In SSReflect these moves are performed by two tacticals ‘=>’ and ‘:’, so that the bookkeeping required by a deductive step can be directly associated to that step, and that tactics in an SSReflect script correspond to actual logical steps in the proof rather than merely shuffle facts. Still, some isolated bookkeeping is unavoidable, such as naming variables and assumptions at the beginning of a proof. SSReflect provides a specific move tactic for this purpose.
Now move does essentially nothing: it is mostly a placeholder for ‘=>’ and ‘:’. The ‘=>’ tactical moves variables, local definitions, and assumptions to the context, while the ‘:’ tactical moves facts and constants to the goal. For example, the proof of^{3}
might start with
where move does nothing, but =>
m
n
le_m_n
changes the
variables and assumption of the goal in the constants m n : nat
and the fact le_n_m
:
n
<=
m
, thus exposing the conclusion
m  n + n = m.
The ‘:’ tactical is the converse of ‘=>’: it removes facts and constants from the context by turning them into variables and assumptions. Thus
turns back m and le_m_n
into a variable and an assumption, removing
them from the proof context, and changing the goal to
which can be proved by induction on n using elim: n.
Because they are tacticals, ‘:’ and ‘=>’ can be combined, as in
simultaneously renames m
and le_m_n
into p
and le_n_p
,
respectively, by first turning them into unnamed variables, then
turning these variables back into constants and facts.
Furthermore, SSReflect redefines the basic Coq tactics case, elim, and apply so that they can take better advantage of ’:’ and ‘=>’. In there SSReflect variants, these tactic operate on the first variable or constant of the goal and they do not use or change the proof context. The ‘:’ tactical is used to operate on an element in the context. For instance the proof of subnK could continue with
instead of elim n; this has the advantage of removing n from the context. Better yet, this elim can be combined with previous move and with the branching version of the => tactical (described in 11.5.4), to encapsulate the inductive step in a single command:
which breaks down the proof into two subgoals,
given m : nat, and
given m n : nat, lt_n_m
:
S
n
<=
m
, and
The ’:’ and ‘=>’ tacticals can be explained very simply if one views the goal as a stack of variables and assumptions piled on a conclusion:
 tactic : a b c pushes the context constants a, b, c as goal variables before performing tactic.
 tactic => a b c pops the top three goal variables as context constants a, b, c, after tactic has been performed.
These pushes and pops do not need to balance out as in the examples above, so
would rename m into p, but leave an extra assumption n <= p in the goal.
Basic tactics like apply and elim can also be used without the ’:’ tactical: for example we can directly start a proof of subnK by induction on the top variable m with
The general form of the localization tactical in is also best explained in terms of the goal stack:
is basically equivalent to
with two differences: the in tactical will preserve the body of a if a is a defined constant, and if the ‘*’ is omitted it will use a temporary abbreviation to hide the statement of the goal from /*tactic*/.
The general form of the in tactical can be used directly with the move, case and elim tactics, so that one can write
instead of
This is quite useful for inductive proofs that involve many facts.
See section 11.6.5 for the general syntax and presentation of the in tactical.
11.5.2 The defective tactics
In this section we briefly present the three basic tactics performing context manipulations and the main backward chaining tool.
The move tactic.
The move tactic, in its defective form, behaves like the primitive hnf Coq tactic. For example, such a defective:
exposes the first assumption in the goal, i.e. its changes the goal False into False > False.
More precisely, the move tactic inspects the goal and does nothing (idtac) if an introduction step is possible, i.e. if the goal is a product or a let…in, and performs hnf otherwise.
Of course this tactic is most often used in combination with the bookkeeping tacticals (see section 11.5.4 and 11.5.3). These combinations mostly subsume the intros, generalize, revert, rename, clear and pattern tactics.
The case tactic.
The case tactic performs primitive case analysis on (co)inductive types; specifically, it destructs the top variable or assumption of the goal, exposing its constructor(s) and its arguments, as well as setting the value of its type family indices if it belongs to a type family (see section 11.5.6).
The SSReflect case tactic has a special behavior on equalities. If the top assumption of the goal is an equality, the case tactic “destructs” it as a set of equalities between the constructor arguments of its left and right hand sides, as per the tactic injection. For example, case changes the goal
into
Note also that the case of SSReflect performs False elimination, even if no branch is generated by this case operation. Hence the command:
on a goal of the form False > G will succeed and prove the goal.
The elim tactic.
The elim tactic performs inductive elimination on inductive types. The defective:
tactic performs inductive elimination on a goal whose top assumption has an inductive type. For example on goal of the form:
in a context containing m : nat, the
tactic produces two goals,
on one hand and
on the other hand.
The apply tactic.
The apply tactic is the main backward chaining tactic of the proof system. It takes as argument any /*term*/ and applies it to the goal. Assumptions in the type of /*term*/ that don’t directly match the goal may generate one or more subgoals.
In fact the SSReflect tactic:
is a synonym for:
where top is fresh name, and the sequence of refine tactics tries to catch the appropriate number of wildcards to be inserted. Note that this use of the refine tactic implies that the tactic tries to match the goal up to expansion of constants and evaluation of subterms.
SSReflect’s apply has a special behaviour on goals containing existential metavariables of sort Prop. Consider the following example:
Note that the last _ of the tactic apply: (ex_intro _ (exist _ y _)) represents a proof that y < 3. Instead of generating the following goal
the system tries to prove y < 3 calling the trivial tactic. If it succeeds, let’s say because the context contains H : y < 3, then the system generates the following goal:
Otherwise the missing proof is considered to be irrelevant, and is thus discharged generating the following goals:
Last, the user can replace the trivial tactic by defining an Ltac expression named ssrautoprop.
11.5.3 Discharge
The general syntax of the discharging tactical ‘:’ is:
where n > 0, and ditem and clearswitch are defined as
ditem ::= [occswitch  clearswitch] term clearswitch ::= { ident_{1} … ident_{m} }
with the following requirements:
 tactic must be one of the four basic tactics described in 11.5.2, i.e., move, case, elim or apply, the exact tactic (section 11.6.2), the congr tactic (section 11.7.4), or the application of the view tactical ‘/’ (section 11.9.2) to one of move, case, or elim.
 The optional ident specifies equation generation (section 11.5.5), and is only allowed if tactic is move, case or elim, or the application of the view tactical ‘/’ (section 11.9.2) to case or elim.
 An occswitch selects occurrences of term, as in 11.4.2; occswitch is not allowed if tactic is apply or exact.
 A clear item clearswitch specifies facts and constants to be deleted from the proof context (as per the clear tactic).
The ‘:’ tactical first discharges all the ditems, right to left, and then performs tactic, i.e., for each ditem, starting with ditem_{n}:
 The SSReflect matching algorithm described in section 11.4.2 is used to find occurrences of term in the goal, after filling any holes ‘_’ in term; however if tactic is apply or exact a different matching algorithm, described below, is used ^{4}.
 These occurrences are replaced by a new variable; in particular, if term is a fact, this adds an assumption to the goal.
 If term is exactly the name of a constant or fact in the proof context, it is deleted from the context, unless there is an occswitch.
Finally, tactic is performed just after ditem_{1} has been generalized — that is, between steps 2 and 3 for ditem_{1}. The names listed in the final clearswitch (if it is present) are cleared first, before ditem_{n} is discharged.
Switches affect the discharging of a ditem as follows:
 An occswitch restricts generalization (step 2) to a specific subset of the occurrences of term, as per 11.4.2, and prevents clearing (step 3).
 All the names specified by a clearswitch are deleted from the context in step 3, possibly in addition to term.
For example, the tactic:
 first generalizes (refl_equal n : n = n);
 then generalizes the second occurrence of n.
 finally generalizes all the other occurrences of n, and clears n from the proof context (assuming n is a proof constant).
Therefore this tactic changes any goal G into
where the name n0 is picked by the Coq display function, and assuming n appeared only in G.
Finally, note that a discharge operation generalizes defined constants as variables, and not as local definitions. To override this behavior, prefix the name of the local definition with a @, like in move: @n.
This is in contrast with the behavior of the in tactical (see section 11.6.5), which preserves local definitions by default.
Clear rules
The clear step will fail if term is a proof constant that appears in other facts; in that case either the facts should be cleared explicitly with a clearswitch, or the clear step should be disabled. The latter can be done by adding an occswitch or simply by putting parentheses around term: both
and
generalize n without clearing n from the proof context.
The clear step will also fail if the clearswitch contains a ident that is not in the proof context. Note that SSReflect never clears a section constant.
If tactic is move or case and an equation ident is given, then clear (step 3) for ditem_{1} is suppressed (see section 11.5.5).
Matching for apply and exact
The matching algorithm for ditems of the SSReflect apply and exact tactics exploits the type of ditem_{1} to interpret wildcards in the other ditem and to determine which occurrences of these should be generalized. Therefore, occur switches are not needed for apply and exact.
Indeed, the SSReflect tactic apply: H x is equivalent to
with an appropriate number of wildcards between H and x.
Note that this means that matching for apply and exact has much more context to interpret wildcards; in particular it can accommodate the ‘_’ ditem, which would always be rejected after ‘move:’. For example, the tactic
transforms the goal f a = g b, whose context contains (Hfg : forall x, f x = g x), into g a = g b. This tactic is equivalent (see section 11.5.1) to:
and this is a common idiom for applying transitivity on the left hand side of an equation.
The abstract tactic
The abstract tactic assigns an abstract constant previously introduced with the [: name ] intro pattern (see section 11.5.4, page ??). In a goal like the following:
The tactic abstract: abs n first generalizes the goal with respect to n (that is not visible to the abstract constant abs) and then assigns abs. The resulting goal is:
Once this subgoal is closed, all other goals having abs in their context see the type assigned to abs. In this case:
For a more detailed example the user should refer to section 11.6.6, page ??.
11.5.4 Introduction
The application of a tactic to a given goal can generate (quantified) variables, assumptions, or definitions, which the user may want to introduce as new facts, constants or defined constants, respectively. If the tactic splits the goal into several subgoals, each of them may require the introduction of different constants and facts. Furthermore it is very common to immediately decompose or rewrite with an assumption instead of adding it to the context, as the goal can often be simplified and even proved after this.
All these operations are performed by the introduction tactical ‘=>’, whose general syntax is
where tactic can be any tactic, n > 0 and
iitem ::= ipattern  sitem  clearswitch  /term sitem ::= /=  //  //= ipattern ::= ident  _  ?  *  [occswitch]>  [occswitch]<  [ iitem_{1}^{*}  …  iitem_{m}^{*} ]    [: ident^{+} ]
The ‘=>’ tactical first executes tactic, then the iitems, left to right, i.e., starting from iitem_{1}. An sitem specifies a simplification operation; a clear switch specifies context pruning as in 11.5.3. The ipatterns can be seen as a variant of intro patterns 8.3.2: each performs an introduction operation, i.e., pops some variables or assumptions from the goal.
An sitem can simplify the set of subgoals or the subgoal themselves:
 // removes all the “trivial” subgoals that can be resolved by the SSReflect tactic done described in 11.6.2, i.e., it executes try done.
 /= simplifies the goal by performing partial evaluation, as per the tactic simpl.^{5}
 //= combines both kinds of simplification; it is equivalent to /= //, i.e., simpl; try done.
When an sitem bears a clearswitch, then the clearswitch is
executed after the sitem, e.g., {
IHn
}//
will solve
some subgoals, possibly using the fact IHn
, and will erase IHn
from the context of the remaining subgoals.
The last entry in the iitem grammar rule, /term, represents a view (see section 11.9). If iitem_{k+1} is a view iitem, the view is applied to the assumption in top position once iitem_{1} … iitem_{k} have been performed.
The view is applied to the top assumption.
SSReflect supports the following ipatterns:
 ident pops the top variable, assumption, or local definition into a new constant, fact, or defined constant ident, respectively. Note that defined constants cannot be introduced when δexpansion is required to expose the top variable or assumption.
 ? pops the top variable into an anonymous constant or fact, whose name is picked by the tactic interpreter. SSReflect only generates names that cannot appear later in the user script.^{6}
 _ pops the top variable into an anonymous constant that will be deleted from the proof context of all the subgoals produced by the => tactical. They should thus never be displayed, except in an error message if the constant is still actually used in the goal or context after the last iitem has been executed (sitems can erase goals or terms where the constant appears).
 * pops all the remaining apparent variables/assumptions
as anonymous constants/facts. Unlike ? and move the *
iitem does not expand definitions in the goal to expose
quantifiers, so it may be useful to repeat a move=> * tactic,
e.g., on the goal
forall a b : bool, a <> ba first move=> * adds only _a_ : bool and _b_ : bool to the context; it takes a second move=> * to add _Hyp_ : _a_ = _b_.
 [occswitch]> (resp. [occswitch]<) pops the top assumption (which should be a rewritable proposition) into an anonymous fact, rewrites (resp. rewrites right to left) the goal with this fact (using the SSReflect rewrite tactic described in section 11.7, and honoring the optional occurrence selector), and finally deletes the anonymous fact from the context.
 [ iitem_{1}^{*}  …  iitem_{m}^{*} ], when it is the very first ipattern after tactic => tactical and tactic is not a move, is a branching ipattern. It executes the sequence iitem_{i}^{*} on the i^{th} subgoal produced by tactic. The execution of tactic should thus generate exactly m subgoals, unless the […] ipattern comes after an initial // or //= sitem that closes some of the goals produced by tactic, in which case exactly m subgoals should remain after the sitem, or we have the trivial branching ipattern [], which always does nothing, regardless of the number of remaining subgoals.
 [ iitem_{1}^{*}  …  iitem_{m}^{*} ], when it is not the first ipattern or when tactic is a move, is a destructing ipattern. It starts by destructing the top variable, using the SSReflect case tactic described in 11.5.2. It then behaves as the corresponding branching ipattern, executing the sequence iitem_{i}^{*} in the i^{th} subgoal generated by the case analysis; unless we have the trivial destructing ipattern [], the latter should generate exactly m subgoals, i.e., the top variable should have an inductive type with exactly m constructors.^{7} While it is good style to use the iitem_{i}^{*} to pop the variables and assumptions corresponding to each constructor, this is not enforced by SSReflect.
  does nothing, but counts as an intro pattern. It can also be used to force the interpretation of [ iitem_{1}^{*}  …  iitem_{m}^{*} ] as a case analysis like in move=> [H1 H2]. It can also be used to indicate explicitly the link between a view and a name like in move=> /eqPH1. Last, it can serve as a separator between views. Section 11.9.9 explains in which respect the tactic move=> /v1/v2 differs from the tactic move=> /v1/v2.
 [: ident^{+} ] introduces in the context an abstract constant for each ident. Its type has to be fixed later on by using the abstract tactic (see page ??). Before then the type displayed is <hidden>.
Note that SSReflect does not support the syntax (ipat,…,ipat) for destructing intropatterns.
Clears are deferred until the end of the intro pattern. For example, given the goal:
the tactic move=> {x} > successfully rewrites the goal and deletes x and the anonymous equation. The goal is thus turned into:
If the cleared names are reused in the same intro pattern, a renaming is performed behind the scenes.
Facts mentioned in a clear switch must be valid names in the proof context (excluding the section context).
The rules for interpreting branching and destructing ipattern are motivated by the fact that it would be pointless to have a branching pattern if tactic is a move, and in most of the remaining cases tactic is case or elim, which implies destruction. The rules above imply that
are all equivalent, so which one to use is a matter of style; move should be used for casual decomposition, such as splitting a pair, and case should be used for actual decompositions, in particular for type families (see 11.5.6) and proof by contradiction.
The trivial branching ipattern can be used to force the branching interpretation, e.g.,
are all equivalent.
11.5.5 Generation of equations
The generation of named equations option stores the definition of a new constant as an equation. The tactic:
where l is a list, replaces size l by n in the goal and adds the fact En : size l = n to the context. This is quite different from:
which generates a definition n := (size l). It is not possible to generalize or rewrite such a definition; on the other hand, it is automatically expanded during computation, whereas expanding the equation En requires explicit rewriting.
The use of this equation name generation option with a case or an elim tactic changes the status of the first iitem, in order to deal with the possible parameters of the constants introduced.
On the goal a <> b where a, b are natural numbers, the tactic:
generates two subgoals. The equation E : a = 0 (resp. E : a = S n, and the constant n : nat) has been added to the context of the goal 0 <> b (resp. S n <> b).
If the user does not provide a branching iitem as first iitem, or if the iitem does not provide enough names for the arguments of a constructor, then the constants generated are introduced under fresh SSReflect names. For instance, on the goal a <> b, the tactic:
also generates two subgoals, both requiring a proof of False. The hypotheses E : a = 0 and H : 0 = b (resp. E : a = S _n_ and H : S _n_ = b) have been added to the context of the first subgoal (resp. the second subgoal).
Combining the generation of named equations mechanism with the case tactic strengthens the power of a case analysis. On the other hand, when combined with the elim tactic, this feature is mostly useful for debug purposes, to trace the values of decomposed parameters and pinpoint failing branches.
11.5.6 Type families
When the top assumption of a goal has an inductive type, two specific operations are possible: the case analysis performed by the case tactic, and the application of an induction principle, performed by the elim tactic. When this top assumption has an inductive type, which is moreover an instance of a type family, Coq may need help from the user to specify which occurrences of the parameters of the type should be substituted.
A specific / switch indicates the type family parameters of the type of a ditem immediately following this / switch, using the syntax:
The ditems on the right side of the / switch are discharged as described in section 11.5.3. The case analysis or elimination will be done on the type of the top assumption after these discharge operations.
Every ditem preceding the / is interpreted as arguments of this type, which should be an instance of an inductive type family. These terms are not actually generalized, but rather selected for substitution. Occurrence switches can be used to restrict the substitution. If a term is left completely implicit (e.g. writing just _), then a pattern is inferred looking at the type of the top assumption. This allows for the compact syntax case: {2}_ / eqP, were _ is interpreted as (_ == _). Moreover if the ditems list is too short, it is padded with an initial sequence of _ of the right length.
Here is a small example on lists. We define first a function which adds an element at the end of a given list.
Then we define an inductive predicate for case analysis on lists according to their last element:
Applied to the goal:
the command:
generates two subgoals:
and
both having l : list A in their context.
Applied to the same goal, the command:
generates the same subgoals but l has been cleared from both contexts.
Again applied to the same goal, the command:
generates the subgoals length
l
* 2 =
length
(
nil
++
l
)
and
forall
(
s
:
list
A
) (
x
:
A
),
length
l
* 2 =
length
(
add_last
x
s
++
l
)
where the selected occurrences on the left of the / switch have
been substituted with l instead of being affected by the case
analysis.
The equation name generation feature combined with a type family / switch generates an equation for the first dependent ditem specified by the user. Again starting with the above goal, the command:
adds E : l = nil and E : l = add_last x s, respectively, to the context of the two subgoals it generates.
There must be at least one ditem to the left of the / switch; this prevents any confusion with the view feature. However, the ditems to the right of the / are optional, and if they are omitted the first assumption provides the instance of the type family.
The equation always refers to the first ditem in the actual tactic call, before any padding with initial _s. Thus, if an inductive type has two family parameters, it is possible to have SSReflect generate an equation for the second one by omitting the pattern for the first; note however that this will fail if the type of the second parameter depends on the value of the first parameter.
11.6 Control flow
11.6.1 Indentation and bullets
A linear development of Coq scripts gives little information on the structure of the proof. In addition, replaying a proof after some changes in the statement to be proved will usually not display information to distinguish between the various branches of case analysis for instance.
To help the user in this organization of the proof script at development time, SSReflect provides some bullets to highlight the structure of branching proofs. The available bullets are , + and *. Combined with tabulation, this lets us highlight four nested levels of branching; the most we have ever needed is three. Indeed, the use of “simpl and closing” switches, of terminators (see above section 11.6.2) and selectors (see section 11.6.3) is powerful enough to avoid most of the time more than two levels of indentation.
Here is a fragment of such a structured script:
11.6.2 Terminators
To further structure scripts, SSReflect supplies terminating tacticals to explicitly close off tactics. When replaying scripts, we then have the nice property that an error immediately occurs when a closed tactic fails to prove its subgoal.
It is hence recommended practice that the proof of any subgoal should end with a tactic which fails if it does not solve the current goal, like discriminate, contradiction or assumption.
In fact, SSReflect provides a generic tactical which turns any tactic into a closing one (similar to now). Its general syntax is:
The Ltac expression:
is equivalent to:
and this form should be preferred to the former.
In the script provided as example in section 11.6.1, the paragraph corresponding to each subcase ends with a tactic line prefixed with a by, like in:
The by tactical is implemented using the userdefined, and extensible done tactic. This done tactic tries to solve the current goal by some trivial means and fails if it doesn’t succeed. Indeed, the tactic expression:
is equivalent to:
Conversely, the tactic
is equivalent to:
The default implementation of the done tactic, in the ssreflect.v file, is:
The lemma *not_locked_false_eq_true* is needed to discriminate locked boolean predicates (see section 11.7.3). The iterator tactical do is presented in section 11.6.4. This tactic can be customized by the user, for instance to include an auto tactic.
A natural and common way of closing a goal is to apply a lemma which is the exact one needed for the goal to be solved. The defective form of the tactic:
is equivalent to:
where top is a fresh name affected to the top assumption of the goal. This applied form is supported by the : discharge tactical, and the tactic:
is equivalent to:
(see section 11.5.3 for the documentation of the apply: combination).
Warning The list of tactics, possibly chained by semicolumns, that follows a by keyword is considered as a parenthesized block applied to the current goal. Hence for example if the tactic:
succeeds, then the tactic:
usually fails since it is equivalent to:
11.6.3 Selectors
When composing tactics, the two tacticals first and last let the user restrict the application of a tactic to only one of the subgoals generated by the previous tactic. This covers the frequent cases where a tactic generates two subgoals one of which can be easily disposed of.
This is an other powerful way of linearization of scripts, since it happens very often that a trivial subgoal can be solved in a less than one line tactic. For instance, the tactic:
tries to solve the last subgoal generated by tactic_{1} using the tactic_{2}, and fails if it does not succeeds. Its analogous
tries to solve the first subgoal generated by tactic_{1} using the tactic tactic_{2}, and fails if it does not succeeds.
SSReflect also offers an extension of this facility, by supplying tactics to permute the subgoals generated by a tactic. The tactic:
inverts the order of the subgoals generated by tactic. It is equivalent to:
More generally, the tactic:
where natural is a Coq numeral, or and Ltac variable denoting a Coq numeral, having the value k. It rotates the n subgoals G_{1}, …, G_{n} generated by tactic. The first subgoal becomes G_{n + 1 − k} and the circular order of subgoals remains unchanged.
Conversely, the tactic:
tactic; first natural last.
rotates the n subgoals G_{1}, …, G_{n} generated by tactic in order that the first subgoal becomes G_{k}.
Finally, the tactics last and first combine with the branching syntax of Ltac: if the tactic tactic_{0} generates n subgoals on a given goal, then the tactic
tactic_{0}; last natural [tactic_{1}…tactic_{m}]  tactic_{m+1}.
where natural denotes the integer k as above, applies tactic_{1} to the n −k + 1th goal, … tactic_{m} to the n −k + 2 − mth goal and tactic_{m+1} to the others.
For instance, the script:
creates a goal with four subgoals, the first and the last being nat > True, the second and the third being True with respectively k : nat and l : nat in their context.
11.6.4 Iteration
SSReflect offers an accurate control on the repetition of tactics, thanks to the do tactical, whose general syntax is:
where mult is a multiplier.
Brackets can only be omitted if a single tactic is given and a multiplier is present.
A tactic of the form:
is equivalent to the standard Ltac expression:
The optional multiplier mult specifies how many times the action of tactic should be repeated on the current subgoal.
There are four kinds of multipliers:
 n!: the step tactic is repeated exactly n times (where n is a positive integer argument).
 !: the step tactic is repeated as many times as possible, and done at least once.
 ?: the step tactic is repeated as many times as possible, optionally.
 n?: the step tactic is repeated up to n times, optionally.
For instance, the tactic:
;
do
1?
rewrite
mult_comm
.
rewrites at most one time the lemma mult_com in all the subgoals generated by tactic , whereas the tactic:
;
do
2!
rewrite
mult_comm
.
rewrites exactly two times the lemma mult_com in all the subgoals generated by tactic, and fails if this rewrite is not possible in some subgoal.
Note that the combination of multipliers and rewrite is so often used that multipliers are in fact integrated to the syntax of the SSReflect rewrite tactic, see section 11.7.
11.6.5 Localization
In sections 11.4.3 and 11.5.1, we have already presented the localization tactical in, whose general syntax is:
where ident^{+} is a non empty list of fact names in the context. On the left side of in, tactic can be move, case, elim, rewrite, set, or any tactic formed with the general iteration tactical do (see section 11.6.4).
The operation described by tactic is performed in the facts listed in ident^{+} and in the goal if a * ends the list.
The in tactical successively:
 generalizes the selected hypotheses, possibly “protecting” the goal if * is not present,
 performs tactic, on the obtained goal,
 reintroduces the generalized facts, under the same names.
This defective form of the do tactical is useful to avoid clashes between standard Ltac in and the SSReflect tactical in. For example, in the following script:
the last tactic rewrites the hypothesis H2 : y = 3 both in H1 : x = y and in the goal x + y = 6.
By default in keeps the body of local definitions. To erase the body of a local definition during the generalization phase, the name of the local definition must be written between parentheses, like in rewrite H in H1 (def_n) H2.
From SSReflect 1.5 the grammar for the in tactical has been extended to the following one:
In its simplest form the last option lets one rename hypotheses that can’t be
cleared (like section variables). For example (y := x) generalizes
over x and reintroduces the generalized
variable under the name y (and does not clear x).
For a more precise description the ([@]ident := cpattern)
item refer to the “Advanced generalization” paragraph at page ??.
11.6.6 Structure
Forward reasoning structures the script by explicitly specifying some assumptions to be added to the proof context. It is closely associated with the declarative style of proof, since an extensive use of these highlighted statements make the script closer to a (very detailed) text book proof.
Forward chaining tactics allow to state an intermediate lemma and start a piece of script dedicated to the proof of this statement. The use of closing tactics (see section 11.6.2) and of indentation makes syntactically explicit the portion of the script building the proof of the intermediate statement.
The have tactic.
The main SSReflect forward reasoning tactic is the have tactic. It can be use in two modes: one starts a new (sub)proof for an intermediate result in the main proof, and the other provides explicitly a proof term for this intermediate step.
In the first mode, the syntax of have in its defective form is:
have: term.
This tactic supports open syntax for term. Applied to a goal G, it generates a first subgoal requiring a proof of term in the context of G. The second generated subgoal is of the form term > G, where term becomes the new top assumption, instead of being introduced with a fresh name. At the proofterm level, the have tactic creates a β redex, and introduces the lemma under a fresh name, automatically chosen.
Like in the case of the pose tactic (see section 11.4.1), the types of the holes are abstracted in term. For instance, the tactic:
is equivalent to:
The have tactic also enjoys the same abstraction mechanism as the pose tactic for the noninferred implicit arguments. For instance, the tactic:
opens a new subgoal to prove that:
forall (T : Type) (x : T) (y : nat), (x, y) = (x, y + 0)
The behavior of the defective have tactic makes it possible to generalize it in the following general construction:
Open syntax is supported for term_{1} and term_{2}. For the description of iitems and clear switches see section 11.5.4. The first mode of the have tactic, which opens a subproof for an intermediate result, uses tactics of the form:
which behave like:
Note that the clearswitch precedes the iitem, which allows to reuse a name of the context, possibly used by the proof of the assumption, to introduce the new assumption itself.
The by feature is especially convenient when the proof script of the statement is very short, basically when it fits in one line like in:
The possibility of using iitems supplies a very concise syntax for the further use of the intermediate step. For instance,
on a goal G, opens a new subgoal asking for a proof of forall x, x * a = a, and a second subgoal in which the lemma forall x, x * a = a has been rewritten in the goal G. Note that in this last subgoal, the intermediate result does not appear in the context. Note that, thanks to the deferred execution of clears, the following idiom is supported (assuming x occurs in the goal only):
An other frequent use of the intro patterns combined with have is the destruction of existential assumptions like in the tactic:
which opens a new subgoal asking for a proof of exists x : nat, x > 0 and a second subgoal in which the witness is introduced under the name x : nat, and its property under the name Px : x > 0.
An alternative use of the have tactic is to provide the explicit proof term for the intermediate lemma, using tactics of the form:
This tactic creates a new assumption of type the type of term. If the optional ident is present, this assumption is introduced under the name ident. Note that the body of the constant is lost for the user.
Again, non inferred implicit arguments and explicit holes are abstracted. For instance, the tactic:
adds to the context H : Type > Prop. This is a schematic example but the feature is specially useful when the proof term to give involves for instance a lemma with some hidden implicit arguments.
After the ipattern, a list of binders is allowed. For example, if Pos_to_P is a lemma that proves that P holds for any positive, the following command:
will put in the context H : forall x, 2 * x = x + x. A proof term provided after := can mention these bound variables (that are automatically introduced with the given names). Since the ipattern can be omitted, to avoid ambiguity, bound variables can be surrounded with parentheses even if no type is specified:
The iitems and sitem can be used to interpret the asserted hypothesis with views (see section 11.9) or simplify the resulting goals.
The have tactic also supports a suff modifier which allows for asserting that a given statement implies the current goal without copying the goal itself. For example, given a goal G the tactic have suff H : P results in the following two goals:
Note that H is introduced in the second goal. The suff modifier is not compatible with the presence of a list of binders.
Generating let in context entries with have
Since SSReflect 1.5 the have tactic supports a “transparent” modifier to generate let in context entries: the @ symbol in front of the context entry name. For example:
generates the following two context entry:
Note that the subterm produced by auto is in general huge and uninteresting, and hence one may want to hide it.
For this purpose the [: name ] intro pattern and the tactic abstract (see page ??) are provided. Example:
generates the following two context entries:
The type of blurb can be cleaned up by its annotations by just simplifying it. The annotations are there for technical reasons only.
When intro patterns for abstract constants are used in conjunction with have and an explicit term, they must be used as follows:
In this case the abstract constant blurb is assigned by using it in the term that follows := and its corresponding goal is left to be solved. Goals corresponding to intro patterns for abstract constants are opened in the order in which the abstract constants are declared (not in the “order” in which they are used in the term).
Note that abstract constants do respect scopes. Hence, if a variable is declared after their introduction, it has to be properly generalized (i.e. explicitly passed to the abstract constant when one makes use of it). For example any of the following two lines:
generates the following context:
Last, notice that the use of intro patterns for abstract constants is orthogonal to the transparent flag @ for have.
The have tactic and type classes resolution
Since SSReflect 1.5 the have tactic behaves as follows with respect to type classes inference.
 have foo : ty. Full inference for ty. The first subgoal demands a proof of such instantiated statement.
 have foo : ty := . No inference for ty. Unresolved instances are quantified in ty. The first subgoal demands a proof of such quantified statement. Note that no proof term follows :=, hence two subgoals are generated.
 have foo : ty := t. No inference for ty and t.
 have foo := t. No inference for t. Unresolved instances are quantified in the (inferred) type of t and abstracted in t.
The behavior of SSReflect 1.4 and below (never resolve type classes) can be restored with the option Set SsrHave NoTCResolution.
Variants: the suff and wlog tactics.
As it is often the case in mathematical textbooks, forward reasoning may be used in slightly different variants. One of these variants is to show that the intermediate step L easily implies the initial goal G. By easily we mean here that the proof of L ⇒ G is shorter than the one of L itself. This kind of reasoning step usually starts with: “It suffices to show that …”.
This is such a frequent way of reasoning that SSReflect has a variant of the have tactic called suffices (whose abridged name is suff). The have and suff tactics are equivalent and have the same syntax but:
 the order of the generated subgoals is inversed
 but the optional clear item is still performed in the
second branch. This means that the tactic:
suff {H} H : forall x : nat, x >= 0.fails if the context of the current goal indeed contains an assumption named H.
The rationale of this clearing policy is to make possible “trivial” refinements of an assumption, without changing its name in the main branch of the reasoning.
The have modifier can follow the suff tactic. For example, given a goal G the tactic suff have H : P results in the following two goals:
Note that, in contrast with have suff, the name H has been introduced in the first goal.
Another useful construct is reduction, showing that a particular case is in fact general enough to prove a general property. This kind of reasoning step usually starts with: “Without loss of generality, we can suppose that …”. Formally, this corresponds to the proof of a goal G by introducing a cut wlog_statement > G. Hence the user shall provide a proof for both (wlog_statement > G) > G and wlog_statement > G. However, such cuts are usually rather painful to perform by hand, because the statement wlog_statement is tedious to write by hand, and somtimes even to read.
SSReflect implements this kind of reasoning step through the without loss tactic, whose short name is wlog. It offers support to describe the shape of the cut statements, by providing the simplifying hypothesis and by pointing at the elements of the initial goals which should be generalized. The general syntax of without loss is:
where ident_{1} … ident_{n} are identifiers for constants in the context of the goal. Open syntax is supported for term.
In its defective form:
on a goal G, it creates two subgoals: a first one to prove the formula (term > G) > G and a second one to prove the formula term > G.
:browse confirm wa If the optional list ident_{1} … ident_{n} is present on the left side of /, these constants are generalized in the premise (term > G) of the first subgoal. By default the body of local definitions is erased. This behavior can be inhibited prefixing the name of the local definition with the @ character.
In the second subgoal, the tactic:
is performed if at least one of these optional switches is present in the wlog tactic.
The wlog tactic is specially useful when a symmetry argument simplifies a proof. Here is an example showing the beginning of the proof that quotient and reminder of natural number euclidean division are unique.
The wlog suff variant is simpler, since it cuts wlog_statement instead of wlog_statement > G. It thus opens the goals wlog_statement > G and wlog_statement.
In its simplest form the generally have :... tactic is equivalent to wlog suff :... followed by last first. When the have tactic is used with the generally (or gen) modifier it accepts an extra identifier followed by a comma before the usual intro pattern. The identifier will name the new hypothesis in its more general form, while the intro pattern will be used to process its instance. For example:
The first subgoal will be
while the second one will be
Advanced generalization
The complete syntax for the items on the left hand side of the / separator is the following one:
Clear operations are intertwined with generalization operations. This helps in particular avoiding dependency issues while generalizing some facts.
If an ident is prefixed with the @ prefix mark, then a letin redex is created, which keeps track if its body (if any). The syntax (ident:=cpattern) allows to generalize an arbitrary term using a given name. Note that its simplest form (x := y) is just a renaming of y into x. In particular, this can be useful in order to simulate the generalization of a section variable, otherwise not allowed. Indeed renaming does not require the original variable to be cleared.
The syntax (@x := y) generates a letin abstraction but with the following caveat: x will not bind y, but its body, whenever y can be unfolded. This cover the case of both local and global definitions, as illustrated in the following example:
The first subgoal is:
To avoid unfolding the term captured by the pattern add x one can use the pattern id (addx x), that would produce the following first subgoal:
11.7 Rewriting
The generalized use of reflection implies that most of the intermediate results handled are properties of effectively computable functions. The most efficient mean of establishing such results are computation and simplification of expressions involving such functions, i.e., rewriting. SSReflect therefore includes an extended rewrite tactic, that unifies and combines most of the rewriting functionalities.
11.7.1 An extended rewrite tactic
The main features of the rewrite tactic are:
 It can perform an entire series of such operations in any subset of the goal and/or context;
 It allows to perform rewriting, simplifications, folding/unfolding of definitions, closing of goals;
 Several rewriting operations can be chained in a single tactic;
 Control over the occurrence at which rewriting is to be performed is significantly enhanced.
The general form of an SSReflect rewrite tactic is:
The combination of a rewrite tactic with the in tactical (see section 11.4.3) performs rewriting in both the context and the goal.
A rewrite step rstep has the general form:
where:
rprefix ::= [] [mult] [occswitch  clearswitch] [[rpattern]] rpattern ::= term  in [ident in] term  [term in  term as ] ident in term ritem ::= [/]term  sitem
An rprefix contains annotations to qualify where and how the rewrite operation should be performed:
 The optional initial  indicates the direction of the rewriting of ritem: if present the direction is righttoleft and it is lefttoright otherwise.
 The multiplier mult (see section 11.6.4) specifies if and how the rewrite operation should be repeated.
 A rewrite operation matches the occurrences of a rewrite pattern, and replaces these occurrences by an other term, according to the given ritem. The optional redex switch [rpattern], which should always be surrounded by brackets, gives explicitly this rewrite pattern. In its simplest form, it is a regular term. If no explicit redex switch is present the rewrite pattern to be matched is inferred from the ritem.
 This optional term, or the ritem, may be preceded by an occurrence switch (see section 11.6.3) or a clear item (see section 11.5.3), these two possibilities being exclusive. An occurrence switch selects the occurrences of the rewrite pattern which should be affected by the rewrite operation.
An ritem can be:
 A simplification ritem, represented by a sitem (see section 11.5.4). Simplification operations are intertwined with the possible other rewrite operations specified by the list of ritems.
 A folding/unfolding ritem. The tactic:
rewrite /term
unfolds the head constant of term in every occurrence of the first matching of term in the goal. In particular, if my_def is a (local or global) defined constant, the tactic:
rewrite /my_def.is analogous to:
unfold my_def.Conversely:
rewrite /my_def.is equivalent to:
fold my_def.When an unfold ritem is combined with a redex pattern, a conversion operation is performed. A tactic of the form:
rewrite [term_{1}]/term_{2}.is equivalent to:
change term_{1} with term_{2}.If term_{2} is a single constant and term_{1} head symbol is not term_{2}, then the head symbol of term_{1} is repeatedly unfolded until term_{2} appears.
Definition double x := x + x. Definition ddouble x := double (double x). Lemma ex1 x : ddouble x = 4 * x. rewrite [ddouble _]/double.The resulting goal is:
double x + double x = 4 * xWarning The SSReflect terms containing holes are not typed as abstractions in this context. Hence the following script:
Definition f := fun x y => x + y. Goal forall x y, x + y = f y x. move=> x y. rewrite [f y]/(y + _).raises the error message
User error: fold pattern (y + _) does not match redex (f y)
but the script obtained by replacing the last line with:
rewrite [f y x]/(y + _).is valid.
 A term, which can be:

A term whose type has the form:
where eq is the Leibniz equality or a registered setoid equality.forall (x_{1} : A_{1})…(x_{n} : A_{n}), eq term_{1} term_{2}  A list of terms (t_{1},…,t_{n}), each t_{i} having a type of the
form:
where eq is the Leibniz equality or a registered setoid equality. The tactic:forall (x_{1} : A_{1})…(x_{n} : A_{n}), eq term_{1} term_{2} rewrite rprefix(t_{1},…,t_{n}).is equivalent to:
do [rewrite rprefix t_{1}  …  rewriterprefix t_{n}].
 An anonymous rewrite lemma
(_ : term), where term has again the form:
The tactic:forall (x_{1} : A_{1})…(x_{n} : A_{n}), eq term_{1} term_{2} rewrite (_ : term)is in fact synonym of:
cutrewrite (term).

A term whose type has the form:
11.7.2 Remarks and examples
Rewrite redex selection
The general strategy of SSReflect is to grasp as many redexes as possible and to let the user select the ones to be rewritten thanks to the improved syntax for the control of rewriting.
This may be a source of incompatibilities between the two rewrite tactics.
In a rewrite tactic of the form:
rewrite occswitch[term_{1}]term_{2}.
term_{1} is the explicit rewrite redex and term_{2} is the rewrite rule. This execution of this tactic unfolds as follows:
 First term_{1} and term_{2} are βι normalized. Then term_{2} is put in head normal form if the Leibniz equality constructor eq is not the head symbol. This may involve ζ reductions.
 Then, the matching algorithm (see section 11.4.2) determines the first subterm of the goal matching the rewrite pattern. The rewrite pattern is given by term_{1}, if an explicit redex pattern switch is provided, or by the type of term_{2} otherwise. However, matching skips over matches that would lead to trivial rewrites. All the occurrences of this subterm in the goal are candidates for rewriting.
 Then only the occurrences coded by occswitch (see again section 11.4.2) are finally selected for rewriting.
 The left hand side of term_{2} is unified with the subterm found by the matching algorithm, and if this succeeds, all the selected occurrences in the goal are replaced by the right hand side of term_{2}.
 Finally the goal is βι normalized.
In the case term_{2} is a list of terms, the first topdown (in the goal) lefttoright (in the list) matching rule gets selected.
Chained rewrite steps
The possibility to chain rewrite operations in a single tactic makes scripts more compact and gathers in a single command line a bunch of surgical operations which would be described by a one sentence in a pen and paper proof.
Performing rewrite and simplification operations in a single tactic enhances significantly the concision of scripts. For instance the tactic:
unfolds my_def in the goal, simplifies the second occurrence of the first subterm matching pattern [f _], rewrites my_eq, simplifies the whole goal and closes trivial goals.
Here are some concrete examples of chained rewrite operations, in the proof of basic results on natural numbers arithmetic:
Note the use of the ? switch for parallel rewrite operations in the proof of *addnCA*.
Explicit redex switches are matched first
If an rprefix involves a redex switch, the first step is to find a subterm matching this redex pattern, independently from the left hand side t1 of the equality the user wants to rewrite.
For instance, if H
:
forall
t
u
,
t
+
u
=
u
+
t
is in the context of a
goal x
+
y
=
y
+
x
, the tactic:
transforms the goal into x
+
y
=
x
+
y
.
Note that if this first pattern matching is not compatible with the
ritem, the rewrite fails, even if the goal contains a correct
redex matching both the redex switch and the left hand side of the
equality. For instance, if H
:
forall
t
u
,
t
+
u
* 0 =
t
is
in the context of a goal x
+
y
* 4 + 2 * 0 =
x
+ 2 * 0
, then tactic:
raises the error message:
User error: rewrite rule H doesn't match redex (x + y * 4)
while the tactic:
transforms the goal into x
+
y
* 4 =
x
+ 2 * 0
.
Occurrence switches and redex switches
The tactic:
transforms the goal:
into:
and generates a second subgoal:
The second subgoal is generated by the use of an anonymous lemma in
the rewrite tactic. The effect of the tactic on the initial goal is to
rewrite this lemma at the second occurrence of the first matching
x
+
y
+ 0
of the explicit rewrite redex _
+
y
+ 0
.
Occurrence selection and repetition
Occurrence selection has priority over repetition switches. This means the repetition of a rewrite tactic specified by a multiplier will perform matching each time an elementary rewrite operation is performed. Repeated rewrite tactics apply to every subgoal generated by the previous tactic, including the previous instances of the repetition. For example:
creates a goal x + 1 = x + y + 1, which is turned into z = z by the additional tactic:
In fact, this last tactic generates three subgoals, respectively x + y + 1 = z, z = z and x + 1 = z. Indeed, the second rewrite operation specified with the 2! multiplier applies to the two subgoals generated by the first rewrite.
Multirule rewriting
The rewrite tactic can be provided a tuple of rewrite rules, or more generally a tree of such rules, since this tuple can feature arbitrary inner parentheses. We call multirule such a generalized rewrite rule. This feature is of special interest when it is combined with multiplier switches, which makes the rewrite tactic iterates the rewrite operations prescribed by the rules on the current goal. For instance, let us define two triples multi1 and multi2 as:
Executing the tactic:
on the goal:
turns it into b = b, as rule eqab is the first to apply among the ones gathered in the tuple passed to the rewrite tactic. This multirule (eqab, eqac) is actually a Coq term and we can name it with a definition:
In this case, the tactic rewrite multi1 is a synonym for (eqab, eqac). More precisely, a multirule rewrites the first subterm to which one of the rules applies in a lefttoright traversal of the goal, with the first rule from the multirule tree in lefttoright order. Matching is performed according to the algorithm described in Section 11.4.2, but literal matches have priority. For instance if we add a definition and a new multirule to our context:
then executing the tactic:
on the goal:
turns it into 0 = b, as rule eqd0 applies without unfolding the definition of d. For repeated rewrites the selection process is repeated anew. For instance, if we define:
then executing the tactic:
on the goal:
turns it into 0 = 12 + a: it uses eq_adda_b then eqb0 on the lefthand side only. Now executing the tactic rewrite !multi3 turns the same goal into 0 = 0.
The grouping of rules inside a multirule does not affect the selection strategy but can make it easier to include one rule set in another or to (universally) quantify over the parameters of a subset of rules (as there is special code that will omit unnecessary quantifiers for rules that can be syntactically extracted). It is also possible to reverse the direction of a rule subset, using a special dedicated syntax: the tactic rewrite (= multi1) is equivalent to rewrite multi1_rev with:
except that the constants eqba, eqab, mult1_rev have not been created.
Rewriting with multirules
is useful to implement simplification or transformation
procedures, to be applied on terms of small to medium size. For
instance the library ssrnat
provides two implementations for
arithmetic operations on natural numbers: an elementary one and a tail
recursive version, less inefficient but also less convenient for
reasoning purposes. The library also provides one lemma per such
operation, stating that both versions return the same values when
applied to the same arguments:
The operation on the left hand side of each lemma is the efficient version, and the corresponding naive implementation is on the right hand side. In order to reason conveniently on expressions involving the efficient operations, we gather all these rules in the definition *trecE*:
The tactic:
restores the naive versions of each operation in a goal involving the efficient ones, e.g. for the purpose of a correctness proof.
Wildcards vs abstractions
The rewrite tactic supports ritems containing holes. For example in the tactic (1):
the term _ * 0 = 0 is interpreted as forall n : nat, n * 0 = 0. Anyway this tactic is not equivalent to the tactic (2):
The tactic (1) transforms the goal
(
y
* 0) +
y
* (
z
* 0) = 0
into y * (z * 0) = 0
and generates a new subgoal to prove the statement y * 0 = 0,
which is the instance of the
forall x, x * 0 = 0
rewrite rule that
has been used to perform the rewriting. On the other hand, tactic
(2) performs the same rewriting on the current goal but generates a
subgoal to prove forall x, x * 0 = 0.
When SSReflect rewrite fails on standard Coq licit rewrite
In a few cases, the SSReflect rewrite tactic fails rewriting some redexes which standard Coq successfully rewrites. There are two main cases:

SSReflect never accepts to rewrite indeterminate patterns like:
Lemma foo : forall x : unit, x = tt.SSReflect will however accept the ηζ expansion of this rule:Lemma fubar : forall x : unit, (let u := x in u) = tt.
 In standard Coq, suppose that we work in the following context:
Variable g : nat > nat. Definition f := g.then rewriting H : forall x, f x = 0 in the goal g 3 + g 3 = g 6 succeeds and transforms the goal into 0 + 0 = g 6.
This rewriting is not possible in SSReflect because there is no occurrence of the head symbol f of the rewrite rule in the goal. Rewriting with H first requires unfolding the occurrences of f where the substitution is to be performed (here there is a single such occurrence), using tactic rewrite /f (for a global replacement of f by g) or rewrite pattern/f, for a finer selection.
Existential metavariables and rewriting
The rewrite tactic will not instantiate existing existential metavariables when matching a redex pattern.
If a rewrite rule generates a goal with new existential metavariables, these will be generalized as for apply (see page ??) and corresponding new goals will be generated. For example, consider the following script:
Since insubT has the following type:
and since the implicit argument corresponding to the Px abstraction is not supplied by the user, the resulting goal should be Some x = Some (Sub y ?_{Px}). Instead, SSReflect rewrite tactic generates the two following goals:
The script closes the former with ?(leq_trans le_1)//, then it introduces the new generalization naming it le_2.
As a temporary limitation, this behavior is available only if the rewriting rule is stated using Leibniz equality (as opposed to setoid relations). It will be extended to other rewriting relations in the future.
11.7.3 Locking, unlocking
As program proofs tend to generate large goals, it is important to be able to control the partial evaluation performed by the simplification operations that are performed by the tactics. These evaluations can for example come from a /= simplification switch, or from rewrite steps which may expand large terms while performing conversion. We definitely want to avoid repeating large subterms of the goal in the proof script. We do this by “clamping down” selected function symbols in the goal, which prevents them from being considered in simplification or rewriting steps. This clamping is accomplished by using the occurrence switches (see section 11.4.2) together with “term tagging” operations.
SSReflect provides two levels of tagging.
The first one uses auxiliary definitions to introduce a provably equal copy of any term t. However this copy is (on purpose) not convertible to t in the Coq system^{8}. The job is done by the following construction:
Note that the definition of *master_key* is explicitly opaque. The equation t = locked t given by the lock lemma can be used for selective rewriting, blocking on the fly the reduction in the term t. For example the script:
where 
denotes the boolean disjunction, results in a goal
my_has a ( x :: y :: l) = true. The tactic:
turns it into a x  my_has a (y :: l) = true. Let us now start by reducing the initial goal without blocking reduction. The script:
creates a goal (a x)  (a y)  (my_has a l) = true. Now the tactic:
where orbC states the commutativity of orb, changes the
goal into
(a x)  (my_has a l)  (a y) = true: only the
arguments of the second disjunction where permuted.
It is sometimes desirable to globally prevent a definition from being expanded by simplification; this is done by adding locked in the definition.
For instance, the function *fgraph_of_fun* maps a function whose domain and codomain are finite types to a concrete representation of its (finite) graph. Whatever implementation of this transformation we may use, we want it to be hidden to simplifications and tactics, to avoid the collapse of the graph object:
We provide a special tactic unlock for unfolding such definitions while removing “locks”, e.g., the tactic:
unlock occswitchfgraph_of_fun.
replaces the occurrence(s) of fgraph_of_fun coded by the occswitch with (Fgraph (size_maps _ _)) in the goal.
We found that it was usually preferable to prevent the expansion of some functions by the partial evaluation switch “/=”, unless this allowed the evaluation of a condition. This is possible thanks to an other mechanism of term tagging, resting on the following Notation:
The term (nosimpl t) simplifies to t except in a definition. More precisely, given:
the term foo (or (foo t’)) will not be expanded by the simpl tactic unless it is in a forcing context (e.g., in match foo t’ with … end, foo t’ will be reduced if this allows match to be reduced). Note that nosimpl bar is simply notation for a term that reduces to bar; hence unfold foo will replace foo by bar, and fold foo will replace bar by foo.
Warning The nosimpl trick only works if no reduction is apparent in t; in particular, the declaration:
will usually not work. Anyway, the common practice is to tag only the function, and to use the following definition, which blocks the reduction as expected:
A standard example making this technique shine is the case of arithmetic operations. We define for instance:
The operation addn behaves exactly like plus, except that (addn (S n) m) will not simplify spontaneously to (S (addn n m)) (the two terms, however, are interconvertible). In addition, the unfolding step:
will replace addn directly with plus, so the nosimpl form is essentially invisible.
11.7.4 Congruence
Because of the way matching interferes with type families parameters, the tactic:
will generally fail to perform congruence simplification, even on rather simple cases. We therefore provide a more robust alternative in which the function is supplied:
congr [int] term 
This tactic:
 checks that the goal is a Leibniz equality
 matches both sides of this equality with “term applied to some arguments”, inferring the right number of arguments from the goal and the type of term. This may expand some definitions or fixpoints.
 generates the subgoals corresponding to pairwise equalities of the arguments present in the goal.
The goal can be a non dependent product P > Q. In that case, the system asserts the equation P = Q, uses it to solve the goal, and calls the congr tactic on the remaining goal P = Q. This can be useful for instance to perform a transitivity step, like in the following situation:
the tactic congr (_ = _) turns this goal into:
which can also be obtained starting from:
and using the tactic congr (_ = _): h.
The optional int forces the number of arguments for which the tactic should generate equality proof obligations.
This tactic supports equalities between applications with dependent arguments. Yet dependent arguments should have exactly the same parameters on both sides, and these parameters should appear as first arguments.
The following script:
shows that the congr tactic matches plus with f 0 on the left hand side and g 1 1 on the right hand side, and solves the goal.
The script:
generates the subgoal m + (S n  S m) = n. The tactic rewrite /plus folds back the expansion of plus which was necessary for matching both sides of the equality with an application of S.
Like most SSReflect arguments, term can contain wildcards. The script:
generates three subgoals, respectively x = x * 1, y = y + 0 and y + x  x = y.
11.8 Contextual patterns
The simple form of patterns used so far, terms possibly containing wild cards, often require an additional occswitch to be specified. While this may work pretty fine for small goals, the use of polymorphic functions and dependent types may lead to an invisible duplication of functions arguments. These copies usually end up in types hidden by the implicit arguments machinery or by user defined notations. In these situations computing the right occurrence numbers is very tedious because they must be counted on the goal as printed after setting the Printing All flag. Moreover the resulting script is not really informative for the reader, since it refers to occurrence numbers he cannot easily see.
Contextual patterns mitigate these issues allowing to specify occurrences according to the context they occur in.
11.8.1 Syntax
The following table summarizes the full syntax of cpattern and the corresponding subterm(s) identified by the pattern. In the third column we use s.m.r. for “the subterms matching the redex” specified in the second column.
cpattern  redex  subterms affected 
term  term  all occurrences of term 
ident in term  subterm of term selected by ident  all the subterms identified by ident in all the occurrences of term 
term_{1} in ident in term_{2}  term_{1}  in all s.m.r. in all the subterms identified by ident in all the occurrences of term_{2} 
term_{1} as ident in term_{2}  term_{1}  in all the subterms identified by ident in all the occurrences of term_{2}[term_{1}/ident] 
The rewrite tactic supports two more patterns obtained prefixing the first two with in. The intended meaning is that the pattern identifies all subterms of the specified context. The rewrite tactic will infer a pattern for the redex looking at the rule used for rewriting.
rpattern  redex  subterms affected 
in term  inferred from rule  in all s.m.r. in all occurrences of term 
in ident in term  inferred from rule  in all s.m.r. in all the subterms identified by ident in all the occurrences of term 
The first cpattern is the simplest form matching any context but selecting a specific redex and has been described in the previous sections. We have seen so far that the possibility of selecting a redex using a term with holes is already a powerful mean of redex selection. Similarly, any terms provided by the user in the more complex forms of cpatterns presented in the tables above can contain holes.
For a quick glance at what can be expressed with the last rpattern consider the goal a = b and the tactic
It rewrites all occurrences of the left hand side of rule inside b only (a, and the hidden type of the equality, are ignored). Note that the variant rewrite [X in _ = X]rule would have rewritten b exactly (i.e., it would only work if b and the left hand side of rule can be unified).
11.8.2 Matching contextual patterns
The cpatterns and rpatterns involving terms with holes are matched against the goal in order to find a closed instantiation. This matching proceeds as follows:
cpattern  instantiation order and place for term_{i} and redex 
term  term is matched against the goal, redex is unified with the instantiation of term 
ident in term  term is matched against the goal, redex is unified with the subterm of the instantiation of term identified by ident 
term_{1} in ident in term_{2}  term_{2} is matched against the goal, term_{1} is matched against the subterm of the instantiation of term_{1} identified by ident, redex is unified with the instantiation of term_{1} 
term_{1} as ident in term_{2}  term_{2}[term_{1}/ident] is matched against the goal, redex is unified with the instantiation of term_{1} 
In the following patterns, the redex is intended to be inferred from the rewrite rule.
rpattern  instantiation order and place for term_{i} and redex 
in ident in term  term is matched against the goal, the redex is matched against the subterm of the instantiation of term identified by ident 
in term  term is matched against the goal, redex is matched against the instantiation of term 
11.8.3 Examples
Contextual pattern in set and the : tactical
As already mentioned in section 11.4.2 the set tactic takes as an argument a term in open syntax. This term is interpreted as the simplest for of cpattern. To void confusion in the grammar, open syntax is supported only for the simplest form of patterns, while parentheses are required around more complex patterns.
Given the goal a + b + 1 = b + (a + 1) the first tactic captures b + (a + 1), while the latter a + 1.
Since the user may define an infix notation for in the former tactic may result ambiguous. The disambiguation rule implemented is to prefer patterns over simple terms, but to interpret a pattern with double parentheses as a simple term. For example the following tactic would capture any occurrence of the term ‘a in A’.
Contextual pattern can also be used as arguments of the : tactical. For example:
Contextual patterns in rewrite
As a more comprehensive example consider the following goal:
The tactic rewrite [in f _ _]addSn turns it into:
since the simplification rule addSn is applied only under the f symbol. Then we simplify also the first addition and expand 0 into 0+0.
obtaining:
Note that the right hand side of addn0 is undetermined, but the rewrite pattern specifies the redex explicitly. The right hand side of addn0 is unified with the term identified by X, 0 here.
The following pattern does not specify a redex, since it identifies an entire region, hence the rewrite rule has to be instantiated explicitly. Thus the tactic:
changes the goal as follows:
The following tactic is quite tricky:
and the resulting goals is:
The explicit redex _.+1 is important since its head constant S differs from the head constant inferred from (addnC x.+1) (that is addn, denoted + here). Moreover, the pattern f _ X is important to rule out the first occurrence of (x + y).+1. Last, only the subterms of f _ X identified by X are rewritten, thus the first argument of f is skipped too. Also note the pattern _.+1 is interpreted in the context identified by X, thus it gets instantiated to (y + x).+1 and not (x + y).+1.
The last rewrite pattern allows to specify exactly the shape of the term identified by X, that is thus unified with the left hand side of the rewrite rule.
The resulting goal is:
11.8.4 Patterns for recurrent contexts
The user can define shortcuts for recurrent contexts corresponding to the ident in term part. The notation scope identified with %pattern provides a special notation ‘(X in t)’ the user must adopt to define context shortcuts.
The following example is taken from ssreflect.v where the LHS and RHS shortcuts are defined.
Shortcuts defined this way can be freely used in place of the trailing ident in term part of any contextual pattern. Some examples follow:
11.9 Views and reflection
The bookkeeping facilities presented in section 11.5 are crafted to ease simultaneous introductions and generalizations of facts and casing, naming … operations. It also a common practice to make a stack operation immediately followed by an interpretation of the fact being pushed, that is, to apply a lemma to this fact before passing it to a tactic for decomposition, application and so on.
SSReflect provides a convenient, unified syntax to combine these interpretation operations with the proof stack operations. This view mechanism relies on the combination of the / view switch with bookkeeping tactics and tacticals.
11.9.1 Interpreting eliminations
The view syntax combined with the elim tactic specifies an elimination scheme to be used instead of the default, generated, one. Hence the SSReflect tactic:
is a synonym for:
where top is a fresh name and V any secondorder lemma.
Since an elimination view supports the two bookkeeping tacticals of discharge and introduction (see section 11.5), the SSReflect tactic:
is a synonym for:
where x is a variable in the context, y a fresh name and V any second order lemma; SSReflect relaxes the syntactic restrictions of the Coq elim. The first pattern following : can be a _ wildcard if the conclusion of the view V specifies a pattern for its last argument (e.g., if V is a functional induction lemma generated by the Function command).
The elimination view mechanism is compatible with the equation name generation (see section 11.5.5).
The following script illustrate a toy example of this feature. Let us define a function adding an element at the end of a list:
One can define an alternative, reversed, induction principle on inductively defined lists, by proving the following lemma:
Then the combination of elimination views with equation names result in a concise syntax for reasoning inductively using the user defined elimination scheme. The script:
generates two subgoals: the first one to prove nil = nil in a context featuring E : l = nil and the second to prove add_last u v = add_last u v, in a context containing E : l = add_last u v.
User provided eliminators (potentially generated with the Function Coq’s command) can be combined with the type family switches described in section 11.5.6. Consider an eliminator foo_ind of type:
foo_ind : forall …, forall x : T, P p_{1} … p_{m}
and consider the tactic
elim/foo_ind: e_{1} … / e_{n}
The elim/ tactic distinguishes two cases:
 truncated eliminator
 when x does not occur in P p_{1} … p_{m} and the type of e_{n} unifies with T and e_{n} is not _. In that case, e_{n} is passed to the eliminator as the last argument (x in foo_ind) and e_{n−1} … e_{1} are used as patterns to select in the goal the occurrences that will be bound by the predicate P, thus it must be possible to unify the subterm of the goal matched by e_{n−1} with p_{m}, the one matched by e_{n−2} with p_{m−1} and so on.
 regular eliminator
 in all the other cases. Here it must be possible to unify the term matched by e_{n} with p_{m}, the one matched by e_{n−1} with p_{m−1} and so on. Note that standard eliminators have the shape …forall x, P … x, thus e_{n} is the pattern identifying the eliminated term, as expected.
As explained in section 11.5.6, the initial prefix of e_{i} can be omitted.
Here an example of a regular, but non trivial, eliminator:
The type of plus_ind is
Consider the following goal
The following tactics are all valid and perform the same elimination on that goal.
In the two latter examples, being the user provided pattern a wildcard, the pattern inferred from the type of the eliminator is used instead. For both cases it is (plus _ _) and matches the subterm plus (plus x y) z thus instantiating the latter _ with z. Note that the tactic elim/plus_ind: y / _ would have resulted in an error, since y and z do no unify but the type of the eliminator requires the second argument of P to be the same as the second argument of plus in the second argument of P.
Here an example of a truncated eliminator. Consider the goal
and the tactic
where the type of the eliminator is
Since the pattern for the argument of Pb is not specified, the inferred one
is used instead: (
big[_/_]_(i < _  _ i) _ i), and after the
introductions, the following goals are generated.
Note that the pattern matching algorithm instantiated all the variables occurring in the pattern.
11.9.2 Interpreting assumptions
Interpreting an assumption in the context of a proof is applying it a correspondence lemma before generalizing, and/or decomposing it. For instance, with the extensive use of boolean reflection (see section 11.9.4), it is quite frequent to need to decompose the logical interpretation of (the boolean expression of) a fact, rather than the fact itself. This can be achieved by a combination of move : _ => _ switches, like in the following script, where  is a notation for the boolean disjunction:
which transforms the hypothesis HPn : P n which has been introduced from the initial statement into HQn : Q n. This operation is so common that the tactic shell has specific syntax for it. The following scripts:
or more directly:
are equivalent to the former one. The former script shows how to interpret a fact (already in the context), thanks to the discharge tactical (see section 11.5.3) and the latter, how to interpret the top assumption of a goal. Note that the number of wildcards to be inserted to find the correct application of the view lemma to the hypothesis has been automatically inferred.
The view mechanism is compatible with the case tactic and with the equation name generation mechanism (see section 11.5.5):
creates two new subgoals whose contexts no more contain HQ : Q (a  b) but respectively HPa : P a and HPb : P b. This view tactic performs:
The term on the right of the / view switch is called a view lemma. Any SSReflect term coercing to a product type can be used as a view lemma.
The examples we have given so far explicitly provide the direction of the translation to be performed. In fact, view lemmas need not to be oriented. The view mechanism is able to detect which application is relevant for the current goal. For instance, the script:
has the same behavior as the first example above.
The view mechanism can insert automatically a view hint to transform the double implication into the expected simple implication. The last script is in fact equivalent to:
where:
Specializing assumptions
The special case when the head symbol of the view lemma is a wildcard is used to interpret an assumption by specializing it. The view mechanism hence offers the possibility to apply a higherorder assumption to some given arguments.
For example, the script:
changes the goal into:
11.9.3 Interpreting goals
In a similar way, it is also often convenient to interpret a goal by changing it into an equivalent proposition. The view mechanism of SSReflect has a special syntax apply/ for combining simultaneous goal interpretation operations and bookkeeping steps in a single tactic.
With the hypotheses of section 11.9.2, the following
script, where ~~
denotes the boolean negation:
transforms the goal into Q ( a), and is equivalent to:
where iffLR is the analogous of iffRL for the converse implication.
Any SSReflect term whose type coerces to a double implication can be used as a view for goal interpretation.
Note that the goal interpretation view mechanism supports both apply and exact tactics. As expected, a goal interpretation view command exact/term should solve the current goal or it will fail.
Warning Goal interpretation view tactics are not compatible with the bookkeeping tactical => since this would be redundant with the apply: term => _ construction.
11.9.4 Boolean reflection
In the Calculus of Inductive Construction, there is
an obvious distinction between logical propositions and boolean values.
On the one hand, logical propositions are objects
of sort Prop which is the carrier of intuitionistic
reasoning. Logical connectives in Prop are types, which give precise
information on the structure of their proofs; this information is
automatically exploited by Coq tactics. For example, Coq knows that a
proof of A
\/
B
is either a proof of A or a proof of B.
The tactics left and right change the goal A
\/
B
to A and B, respectively; dualy, the tactic case reduces the goal
A
\/
B
=>
G
to two subgoals A => G and B => G.
On the other hand, bool is an inductive datatype with two constructors true and false. Logical connectives on bool are computable functions, defined by their truth tables, using case analysis:
Properties of such connectives are also established using case analysis: the tactic by case: b solves the goal
by replacing b first by true and then by false; in either case, the resulting subgoal reduces by computation to the trivial true = true.
Thus, Prop and bool are truly complementary: the former supports robust natural deduction, the latter allows bruteforce evaluation. SSReflect supplies a generic mechanism to have the best of the two worlds and move freely from a propositional version of a decidable predicate to its boolean version.
First, booleans are injected into propositions using the coercion mechanism:
This allows any boolean formula b to be used in a context where Coq would expect a proposition, e.g., after Lemma … : . It is then interpreted as (is_true b), i.e., the proposition b = true. Coercions are elided by the prettyprinter, so they are essentially transparent to the user.
11.9.5 The reflect predicate
To get all the benefits of the boolean reflection, it is in fact convenient to introduce the following inductive predicate reflect to relate propositions and booleans:
The statement (reflect P b) asserts that (is_true b) and P are logically equivalent propositions.
For instance, the following lemma:
relates the boolean conjunction to
the logical one /\
.
Note that in andP, b1 and b2 are two boolean variables and
the proposition b1
/\
b2
hides two coercions.
The conjunction of b1 and b2 can then be viewed
as b1
/\
b2
or as b1b2.
Expressing logical equivalences through this family of inductive types makes possible to take benefit from rewritable equations associated to the case analysis of Coq’s inductive types.
Since the equivalence predicate is defined in Coq as:
where /
is a notation for and:
This make case analysis very different according to the way an equivalence property has been defined.
For instance, if we have proved the lemma:
let us compare the respective behaviours of andE and andP on a goal:
The command:
generates a single subgoal:
while the command:
generates two subgoals, respectively b1
/\
b2
>
b1
and
~ (
b1
/\
b2
) > ~~ (
b1

b2
)
.
Expressing reflection relation through the reflect predicate is hence a very convenient way to deal with classical reasoning, by case analysis. Using the reflect predicate allows moreover to program rich specifications inside its two constructors, which will be automatically taken into account during destruction. This formalisation style gives far more efficient specifications than quantified (double) implications.
A naming convention in SSReflect is to postfix the name of view lemmas with P.
For example, orP relates  and \/
, negP relates
~~
and ~
.
The view mechanism is compatible with reflect predicates.
For example, the script
changes the goal a
/\
b
to ab (see section 11.9.3).
Conversely, the script
changes the goal a
/\
b
>
a
into ab > a (see section
11.9.2).
The same tactics can also be used to perform the converse operation, changing a boolean conjunction into a logical one. The view mechanism guesses the direction of the transformation to be used i.e., the constructor of the reflect predicate which should be chosen.
11.9.6 General mechanism for interpreting goals and assumptions
Specializing assumptions
The SSReflect tactic:
move/(_ term_{1} … term_{n})
is equivalent to the tactic:
intro top; generalize (top term_{1} … term_{n}); clear top.
where top is a fresh name for introducing the top assumption of the current goal.
Interpreting assumptions
The general form of an assumption view tactic is:
The term term_{0}, called the view lemma can be:
 a (term coercible to a) function;
 a (possibly quantified) implication;
 a (possibly quantified) double implication;
 a (possibly quantified) instance of the reflect predicate (see section 11.9.5).
Let top be the top assumption in the goal.
There are three steps in the behaviour of an assumption view tactic:

It first introduces
top
.  If the type of term_{0} is neither a double implication nor
an instance of the reflect predicate, then the tactic
automatically generalises a term of the form:(term_{0} term_{1} … term_{n})
where the terms term_{1} … term_{n} instantiate the possible quantified variables of term_{0}, in order for (term_{0} term_{1} … term_{n} top) to be well typed.
 If the type of term_{0} is an equivalence, or
an instance of the reflect predicate, it generalises a term of
the form:
where the term term_{vh} inserted is called an assumption interpretation view hint.(term_{vh} (term_{0} term_{1} … term_{n}))
 It finally clears top.
For a case/term_{0} tactic, the generalisation step is replaced by a case analysis step.
View hints are declared by the user (see section 11.9.8) and are stored in the Hint View database. The proof engine automatically detects from the shape of the top assumption top and of the view lemma term_{0} provided to the tactic the appropriate view hint in the database to be inserted.
If term_{0} is a double implication, then the view hint A will be one of the defined view hints for implication. These hints are by default the ones present in the file ssreflect.v:
which transforms a double implication into the lefttoright one, or:
which produces the converse implication. In both cases, the two first Prop arguments are implicit.
If term_{0} is an instance of the reflect predicate, then A will be one of the defined view hints for the reflect predicate, which are by default the ones present in the file ssrbool.v. These hints are not only used for choosing the appropriate direction of the translation, but they also allow complex transformation, involving negations. For instance the hint:
makes the following script:
transforms the goal into (a / b). In fact^{9} this last script does not exactly use the hint introN, but the more general hint:
The lemma
is an instantiation of introNF using
c := true.introN
Note that views, being part of ipattern, can be used to interpret assertions too. For example the following script asserts a && b but actually used its propositional interpretation.
Interpreting goals
A goal interpretation view tactic of the form:
applied to a goal top is interpreted in the following way:
 If the type of term_{0} is not an instance of the reflect predicate, nor an equivalence, then the term term_{0} is applied to the current goal top, possibly inserting implicit arguments.
 If the type of term_{0} is an instance of the reflect predicate or an equivalence, then a goal interpretation view hint can possibly be inserted, which corresponds to the application of a term (term_{vh} (term_{0} _ … _)) to the current goal, possibly inserting implicit arguments.
Like assumption interpretation view hints, goal interpretation ones are user defined lemmas stored (see section 11.9.8) in the Hint View database bridging the possible gap between the type of term_{0} and the type of the goal.
11.9.7 Interpreting equivalences
Equivalent boolean propositions are simply equal boolean terms. A special construction helps the user to prove boolean equalities by considering them as logical double implications (between their coerced versions), while performing at the same time logical operations on both sides.
The syntax of double views is:
The term term_{l} is the view lemma applied to the left hand side of the equality, term_{r} is the one applied to the right hand side.
In this context, the identity view:
is useful, for example the tactic:
transforms the goal
~~ (
b1

b2
)=
b3
into two subgoals, respectively
~~ (
b1

b2
) >
b3
and
b3
> ~~ (
b1

b2
).
The same goal can be decomposed in several ways, and the user may choose the most convenient interpretation. For instance, the tactic:
applied on the same goal ~~ (
b1

b2
) =
b3
generates the subgoals
~~
b1
/\ ~~
b2
>
b3
and
b3
> ~~
b1
/\ ~~
b2
.
11.9.8 Declaring new Hint Views
The database of hints for the view mechanism is extensible via a dedicated vernacular command. As library ssrbool.v already declares a corpus of hints, this feature is probably useful only for users who define their own logical connectives. Users can declare their own hints following the syntax used in ssrbool.v:
where tactic∈ {move, apply}, ident is the
name of the lemma to be declared as a hint, and natural a natural
number. If move
is used as tactic, the hint is declared for
assumption interpretation tactics, apply
declares hints for goal
interpretations.
Goal interpretation view hints are declared for both simple views and
left hand side views. The optional natural number natural is the
number of implicit arguments to be considered for the declared hint
view lemma name_of_the_lemma.
The command:
with a double slash //
, declares hint views for right hand sides of
double views.
See the files ssreflect.v and ssrbool.v for examples.
11.9.9 Multiple views
The hypotheses and the goal can be interpreted applying multiple views in sequence. Both move and apply can be followed by an arbitrary number of /term_{i}. The main difference between the following two tactics
is that the former applies all the views to the principal goal. Applying a view with hypotheses generates new goals, and the second line would apply the view v2 to all the goals generated by apply/v1. Note that the NOOP intro pattern  can be used to separate two views, making the two following examples equivalent:
The tactic move can be used together with the in tactical to pass a given hypothesis to a lemma. For example, if P2Q : P > Q and Q2R : Q > R, the following tactic turns the hypothesis p : P into P : R.
If the list of views is of length two, Hint Views for interpreting equivalences are indeed taken into account, otherwise only single Hint Views are used.
11.10 SSReflect searching tool
SSReflect proposes an extension of the Search command. Its syntax is:
where name is the name of an open module. This command search returns the list of lemmas:
 whose conclusion contains a subterm matching the optional first pattern. A  reverses the test, producing the list of lemmas whose conclusion does not contain any subterm matching the pattern;
 whose name contains the given string. A  prefix reverses
the test, producing the list of lemmas whose name does not contain the
string. A string that contains symbols or
is followed by a scope key, is interpreted as the constant whose
notation involves that string (e.g.,
+
foraddn
), if this is unambiguous; otherwise the diagnostic includes the output of the Locate vernacular command.  whose statement, including assumptions and types, contains a subterm matching the next patterns. If a pattern is prefixed by , the test is reversed;
 contained in the given list of modules, except the ones in the modules prefixed by a .
Note that:

As for regular terms, patterns can feature scope
indications. For instance, the command:
Search _ (_ + _)%N.lists all the lemmas whose statement (conclusion or hypotheses) involve an application of the binary operation denoted by the infix + symbol in the N scope (which is SSReflect scope for natural numbers).
 Patterns with holes should be surrounded by parentheses.
 Search always volunteers the expansion of the notation, avoiding the
need to execute Locate independently. Moreover, a string fragment
looks for any notation that contains fragment as
a substring. If the
ssrbool
library is imported, the command:Search "~~".answers :"~~" is part of notation (~~ _) In bool_scope, (~~ b) denotes negb b negbT forall b : bool, b = false > ~~ b contra forall c b : bool, (c > b) > ~~ b > ~~ c introN forall (P : Prop) (b : bool), reflect P b > ~ P > ~~ b  A diagnostic is issued if there are different matching notations; it is an error if all matches are partial.
 Similarly, a diagnostic warns about multiple interpretations, and signals an error if there is no default one.
 The command Search in M.
is a way of obtaining the complete signature of the module
M
.  Strings and pattern indications can be interleaved, but the
first indication has a special status if it is a pattern, and only
filters the conclusion of lemmas:

The command :
Search (_ =1 _) "bij".lists all the lemmas whose conclusion features a ’=1’ and whose name contains the string
bij
.  The command :
Search "bij" (_ =1 _).lists all the lemmas whose statement, including hypotheses, features a ’=1’ and whose name contains the string
bij
.

The command :
11.11 Synopsis and Index
Parameters
dtactic one of the elim, case, congr, apply, exact and move SSReflect tactics fixbody standard Coq fix_body ident standard Coq identifier int integer literal key notation scope name module name natural int or Ltac variable denoting a standard Coq numeral^{1} pattern synonym for term string standard Coq string tactic standard Coq tactic or SSReflect tactic term Gallina term, possibly containing wildcards
 1
 The name of this Ltac variable should not be the name of a tactic which can be followed by a bracket
[
, likedo
,have
,…
Items and switches
binder ident  ( ident [: term ] ) binder p. ?? clearswitch { ident^{+} } clear switch p. ?? cpattern [term in  term as] ident in term context pattern p. ?? ditem [occswitch  clearswitch] [term  (cpattern)] discharge item p. ?? genitem [@]ident  (ident)  ([@]ident := cpattern) generalization item p. ?? ipattern ident  _  ?  *  [occswitch]>  [occswitch]<  intro pattern p. ?? [ iitem^{*}  …  iitem^{*} ]    [: ident^{+}] iitem clearswitch  sitem  ipattern  /term intro item p. ?? intmult [natural] multmark multiplier p. ?? occswitch { [+  ] natural^{*}} occur. switch p. ?? mult [natural] multmark multiplier p. ?? multmark ?  ! multiplier mark p. ?? ritem [/] term  sitem rewrite item p. ?? rprefix [] [intmult] [occswitch  clearswitch] [[rpattern]] rewrite prefix p. ?? rpattern term  cpattern  in [ident in] term rewrite pattern p. ?? rstep [rprefix]ritem rewrite step p. ?? sitem /=  //  //= simplify switch p. ??
Tactics
Note: without loss and suffices are synonyms for wlog and suff respectively.
move idtac or hnf p. ?? apply application p. ?? exact abstract p. ??, ?? elim induction p. ?? case case analysis p. ?? rewrite rstep^{+} rewrite p. ?? have iitem^{*} [ipattern] [sitem  binder^{+}] [: term] := term forward p. ?? have iitem^{*} [ipattern] [sitem binder^{+}] : term [by tactic] chaining have suff [clearswitch] [ipattern] [: term] := term have suff [clearswitch] [ipattern] : term [by tactic] gen have [ident,] [ipattern] : genitem^{+} / term [by tactic] wlog [suff] [iitem] : [genitem clearswitch]^{*} / term specializing p. ?? suff iitem^{*} [ipattern] [binder^{+}] : term [by tactic] backchaining p. ?? suff [have] [clearswitch] [ipattern] : term [by tactic] pose ident := term local definition p. ?? pose ident binder^{+} := term local function definition pose fix fixbody local fix definition pose cofix fixbody local cofix definition set ident [: term] := [occswitch] [term (cpattern)] abbreviation p. ?? unlock [rprefix]ident]^{*} unlock p. ?? congr [natural] term congruence p. ??
Tacticals
dtactic [ident] : ditem^{+} [clearswitch] discharge p. ?? tactic => iitem^{+} introduction p. ?? tactic in [genitem  clearswitch]^{+} [*] localization p. ?? do [mult] [ tactic  …  tactic ] iteration p. ?? do mult tactic tactic ; first [natural] [tactic  …  tactic] selector p. ?? tactic ; last [natural] [tactic  …  tactic] tactic ; first [natural] last subgoals p. ?? tactic ; last [natural] first rotation by [ tactic  …  tactic ] closing p. ?? by [] by tactic
Commands
 1
 Unfortunately, even after a call to the Set Printing All command, some occurrences are still not displayed to the user, essentially the ones possibly hidden in the predicate of a dependent match structure.
 2
 Thus scripts that depend on bound variable names, e.g., via intros or with, are inherently fragile.
 3
 The name subnK reads as “right cancellation rule for nat subtraction”.
 4
 Also, a slightly different variant may be used for the first ditem of case and elim; see section 11.5.6.
 5
 Except /= does not expand the local definitions created by the SSReflect in tactical.
 6
 SSReflect reserves all identifiers of the form “_x_”, which is used for such generated names.
 7
 More precisely, it should have a quantified inductive type with a assumptions and m − a constructors.
 8
 This is an implementation feature: there is not such obstruction in the metatheory
 9
 The current state of the proof shall be displayed by the Show Proof command of Coq proof mode.