# Library Coq.micromega.Refl

Require Import List.
Require Setoid.

Set Implicit Arguments.

Fixpoint make_impl (A : Type) (eval : A -> Prop) (l : list A) (goal : Prop) {struct l} : Prop :=
match l with
| nil => goal
| cons e l => (eval e) -> (make_impl eval l goal)
end.

Theorem make_impl_true :
forall (A : Type) (eval : A -> Prop) (l : list A), make_impl eval l True.

Theorem make_impl_map :
forall (A B: Type) (eval : A -> Prop) (eval' : A*B -> Prop) (l : list (A*B)) r
(EVAL : forall x, eval' x <-> eval (fst x)),
make_impl eval' l r <-> make_impl eval (List.map fst l) r.

Fixpoint make_conj (A : Type) (eval : A -> Prop) (l : list A) {struct l} : Prop :=
match l with
| nil => True
| cons e nil => (eval e)
| cons e l2 => ((eval e) /\ (make_conj eval l2))
end.

Theorem make_conj_cons : forall (A : Type) (eval : A -> Prop) (a : A) (l : list A),
make_conj eval (a :: l) <-> eval a /\ make_conj eval l.

Lemma make_conj_impl : forall (A : Type) (eval : A -> Prop) (l : list A) (g : Prop),
(make_conj eval l -> g) <-> make_impl eval l g.

Lemma make_conj_in : forall (A : Type) (eval : A -> Prop) (l : list A),
make_conj eval l -> (forall p, In p l -> eval p).

Lemma make_conj_app : forall A eval l1 l2, @make_conj A eval (l1 ++ l2) <-> @make_conj A eval l1 /\ @make_conj A eval l2.

Infix "+++" := rev_append (right associativity, at level 60) : list_scope.

Lemma make_conj_rapp : forall A eval l1 l2, @make_conj A eval (l1 +++ l2) <-> @make_conj A eval (l1++l2).

Lemma not_make_conj_cons : forall (A:Type) (t:A) a eval (no_middle_eval : (eval t) \/ ~ (eval t)),
~ make_conj eval (t ::a) <-> ~ (eval t) \/ (~ make_conj eval a).

Lemma not_make_conj_app : forall (A:Type) (t:list A) a eval
(no_middle_eval : forall d, eval d \/ ~ eval d) ,
~ make_conj eval (t ++ a) <-> (~ make_conj eval t) \/ (~ make_conj eval a).