Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (21445 entries)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (889 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (714 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1464 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (482 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (10031 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (663 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (537 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (374 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (285 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (457 entries)
Instance Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (616 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1328 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (3468 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (137 entries)

C

C [definition, in Coq.Reals.Binomial]
cancel [definition, in Coq.ssr.ssrfun]
canLR [lemma, in Coq.ssr.ssrfun]
canLR_on [lemma, in Coq.ssr.ssrbool]
canLR_in [lemma, in Coq.ssr.ssrbool]
canon [projection, in Coq.QArith.Qcanon]
canonical_Rsqr [lemma, in Coq.Reals.R_sqr]
canRL [lemma, in Coq.ssr.ssrfun]
canRL_on [lemma, in Coq.ssr.ssrbool]
canRL_in [lemma, in Coq.ssr.ssrbool]
can_mono_in [lemma, in Coq.ssr.ssrbool]
can_mono [lemma, in Coq.ssr.ssrbool]
can_in_inj [lemma, in Coq.ssr.ssrbool]
can_comp [lemma, in Coq.ssr.ssrfun]
can_inj [lemma, in Coq.ssr.ssrfun]
can_pcan [lemma, in Coq.ssr.ssrfun]
can_compute_Z [record, in Coq.nsatz.Nsatz]
can_compute_Z [inductive, in Coq.nsatz.Nsatz]
cardinal [inductive, in Coq.Sets.Finite_sets]
cardinalO_empty [lemma, in Coq.Sets.Finite_sets_facts]
cardinal_decreases [lemma, in Coq.Sets.Image]
cardinal_Im_intro [lemma, in Coq.Sets.Image]
cardinal_unicity [lemma, in Coq.Sets.Finite_sets_facts]
cardinal_Empty [lemma, in Coq.Sets.Finite_sets_facts]
cardinal_is_functional [lemma, in Coq.Sets.Finite_sets_facts]
cardinal_finite [lemma, in Coq.Sets.Finite_sets_facts]
cardinal_elim [lemma, in Coq.Sets.Finite_sets]
cardinal_invert [lemma, in Coq.Sets.Finite_sets]
card_Add_gen [lemma, in Coq.Sets.Finite_sets_facts]
card_soustr_1 [lemma, in Coq.Sets.Finite_sets_facts]
card_add [constructor, in Coq.Sets.Finite_sets]
card_empty [constructor, in Coq.Sets.Finite_sets]
Carrier [definition, in Coq.Sets.Partial_Order]
Carrier_of [projection, in Coq.Sets.Partial_Order]
carry [inductive, in Coq.Numbers.Cyclic.Abstract.DoubleType]
Carry [section, in Coq.Numbers.Cyclic.Abstract.DoubleType]
Carry.A [variable, in Coq.Numbers.Cyclic.Abstract.DoubleType]
caseS [definition, in Coq.Vectors.Fin]
caseS [definition, in Coq.Vectors.VectorDef]
caseS' [definition, in Coq.Vectors.Fin]
caseS' [definition, in Coq.Vectors.VectorDef]
case0 [definition, in Coq.Vectors.Fin]
case0 [definition, in Coq.Vectors.VectorDef]
cast [definition, in Coq.Vectors.Fin]
cast [definition, in Coq.Vectors.VectorEq]
CAST [section, in Coq.Vectors.VectorEq]
catcomp [definition, in Coq.ssr.ssrfun]
cauchy_finite [lemma, in Coq.Reals.Cauchy_prod]
cauchy_abs [lemma, in Coq.Reals.PartSum]
Cauchy_crit_series [definition, in Coq.Reals.PartSum]
cauchy_min [lemma, in Coq.Reals.SeqProp]
cauchy_opp [lemma, in Coq.Reals.SeqProp]
cauchy_maj [lemma, in Coq.Reals.SeqProp]
cauchy_bound [lemma, in Coq.Reals.Rseries]
Cauchy_crit [definition, in Coq.Reals.Rseries]
Cauchy_prod [library]
ceiling [definition, in Coq.micromega.ZMicromega]
ceqb_spec [lemma, in Coq.micromega.EnvRing]
ceqb_spec' [lemma, in Coq.setoid_ring.Field_theory]
ceqb_spec [lemma, in Coq.setoid_ring.Field_theory]
ceqb_spec [lemma, in Coq.setoid_ring.Ring_polynom]
CEquivalence [library]
Cesaro [lemma, in Coq.Reals.SeqSeries]
Cesaro_1 [lemma, in Coq.Reals.SeqSeries]
CFactor [definition, in Coq.setoid_ring.Ring_polynom]
Chain [record, in Coq.Sets.Cpo]
Chain_cond [projection, in Coq.Sets.Cpo]
charac [definition, in Coq.Sets.Uniset]
Charac [constructor, in Coq.Sets.Uniset]
Characterisation_wf_relations.leA [variable, in Coq.Wellfounded.Well_Ordering]
Characterisation_wf_relations.A [variable, in Coq.Wellfounded.Well_Ordering]
Characterisation_wf_relations [section, in Coq.Wellfounded.Well_Ordering]
check [definition, in Coq.nsatz.Nsatz]
checker_nf_sound [lemma, in Coq.micromega.RingMicromega]
check_normalised_formulas [definition, in Coq.micromega.RingMicromega]
check_inconsistent_sound [lemma, in Coq.micromega.RingMicromega]
check_inconsistent [definition, in Coq.micromega.RingMicromega]
check_correct [lemma, in Coq.nsatz.Nsatz]
check_proof [definition, in Coq.rtauto.Rtauto]
Choice [lemma, in Coq.Init.Specif]
choice [lemma, in Coq.Logic.ClassicalChoice]
choice [lemma, in Coq.Logic.ClassicalEpsilon]
ChoiceFacts [library]
ChoiceSchemes [section, in Coq.Logic.ChoiceFacts]
ChoiceSchemes.A [variable, in Coq.Logic.ChoiceFacts]
ChoiceSchemes.B [variable, in Coq.Logic.ChoiceFacts]
ChoiceSchemes.P [variable, in Coq.Logic.ChoiceFacts]
Choice_lemmas.R2 [variable, in Coq.Init.Specif]
Choice_lemmas.R1 [variable, in Coq.Init.Specif]
Choice_lemmas.R' [variable, in Coq.Init.Specif]
Choice_lemmas.R [variable, in Coq.Init.Specif]
Choice_lemmas.S' [variable, in Coq.Init.Specif]
Choice_lemmas.S [variable, in Coq.Init.Specif]
Choice_lemmas [section, in Coq.Init.Specif]
Choice2 [lemma, in Coq.Init.Specif]
cI [definition, in Coq.setoid_ring.Ncring_polynom]
CInv [constructor, in Coq.micromega.RMicromega]
Cj [constructor, in Coq.micromega.Tauto]
classic [axiom, in Coq.Logic.Classical_Prop]
Classical [library]
ClassicalChoice [library]
ClassicalDescription [library]
ClassicalEpsilon [library]
ClassicalFacts [library]
classically [definition, in Coq.ssr.ssrbool]
ClassicalUniqueChoice [library]
classical_denumerable_description_imp_fun_choice [lemma, in Coq.Logic.ChoiceFacts]
classical_proof_irrelevence [lemma, in Coq.Logic.Berardi]
classical_indefinite_description [lemma, in Coq.Logic.ClassicalEpsilon]
classical_definite_description [lemma, in Coq.Logic.ClassicalDescription]
Classical_Prop [library]
Classical_Pred_Type [library]
Classical_sets [library]
classicP [lemma, in Coq.ssr.ssrbool]
classicW [lemma, in Coq.ssr.ssrbool]
classic_set [abbreviation, in Coq.Logic.ClassicalUniqueChoice]
classic_set_in_prop_context [lemma, in Coq.Logic.ClassicalUniqueChoice]
classic_imply [lemma, in Coq.ssr.ssrbool]
classic_pick [lemma, in Coq.ssr.ssrbool]
classic_EM [lemma, in Coq.ssr.ssrbool]
classic_bind [lemma, in Coq.ssr.ssrbool]
clause [definition, in Coq.micromega.Tauto]
cleb_sound [lemma, in Coq.micromega.RingMicromega]
clone_pred [definition, in Coq.ssr.ssrbool]
closed [record, in Coq.setoid_ring.Ncring_tac]
closed_set_P1 [lemma, in Coq.Reals.Rtopology]
closed_set [definition, in Coq.Reals.Rtopology]
clos_trans_transp_permute [lemma, in Coq.Relations.Operators_Properties]
clos_rst_rstn1_iff [lemma, in Coq.Relations.Operators_Properties]
clos_rst_rstn1 [lemma, in Coq.Relations.Operators_Properties]
clos_rstn1_sym [lemma, in Coq.Relations.Operators_Properties]
clos_rstn1_trans [lemma, in Coq.Relations.Operators_Properties]
clos_rstn1_rst [lemma, in Coq.Relations.Operators_Properties]
clos_rst_rst1n_iff [lemma, in Coq.Relations.Operators_Properties]
clos_rst_rst1n [lemma, in Coq.Relations.Operators_Properties]
clos_rst1n_sym [lemma, in Coq.Relations.Operators_Properties]
clos_rst1n_trans [lemma, in Coq.Relations.Operators_Properties]
clos_rst1n_rst [lemma, in Coq.Relations.Operators_Properties]
clos_refl_trans_ind_right [lemma, in Coq.Relations.Operators_Properties]
clos_refl_trans_ind_left [lemma, in Coq.Relations.Operators_Properties]
clos_rt_rtn1_iff [lemma, in Coq.Relations.Operators_Properties]
clos_rt_rtn1 [lemma, in Coq.Relations.Operators_Properties]
clos_rtn1_rt [lemma, in Coq.Relations.Operators_Properties]
clos_rt_rt1n_iff [lemma, in Coq.Relations.Operators_Properties]
clos_rt_rt1n [lemma, in Coq.Relations.Operators_Properties]
clos_rt1n_rt [lemma, in Coq.Relations.Operators_Properties]
clos_rtn1_step [lemma, in Coq.Relations.Operators_Properties]
clos_rt1n_step [lemma, in Coq.Relations.Operators_Properties]
clos_trans_tn1_iff [lemma, in Coq.Relations.Operators_Properties]
clos_trans_tn1 [lemma, in Coq.Relations.Operators_Properties]
clos_tn1_trans [lemma, in Coq.Relations.Operators_Properties]
clos_trans_t1n_iff [lemma, in Coq.Relations.Operators_Properties]
clos_trans_t1n [lemma, in Coq.Relations.Operators_Properties]
clos_t1n_trans [lemma, in Coq.Relations.Operators_Properties]
clos_rst_idempotent [lemma, in Coq.Relations.Operators_Properties]
clos_rst_is_equiv [lemma, in Coq.Relations.Operators_Properties]
clos_rt_t [lemma, in Coq.Relations.Operators_Properties]
clos_r_clos_rt [lemma, in Coq.Relations.Operators_Properties]
clos_rt_clos_rst [lemma, in Coq.Relations.Operators_Properties]
clos_rt_idempotent [lemma, in Coq.Relations.Operators_Properties]
clos_rt_is_preorder [lemma, in Coq.Relations.Operators_Properties]
clos_refl_sym_trans_n1 [inductive, in Coq.Relations.Relation_Operators]
clos_refl_sym_trans_1n [inductive, in Coq.Relations.Relation_Operators]
clos_refl_sym_trans [inductive, in Coq.Relations.Relation_Operators]
clos_refl_trans_n1 [inductive, in Coq.Relations.Relation_Operators]
clos_refl_trans_1n [inductive, in Coq.Relations.Relation_Operators]
clos_refl_trans [inductive, in Coq.Relations.Relation_Operators]
clos_refl [inductive, in Coq.Relations.Relation_Operators]
clos_trans_n1 [inductive, in Coq.Relations.Relation_Operators]
clos_trans_1n [inductive, in Coq.Relations.Relation_Operators]
clos_trans [inductive, in Coq.Relations.Relation_Operators]
cltb [definition, in Coq.micromega.RingMicromega]
cltb_sound [lemma, in Coq.micromega.RingMicromega]
clt_morph [lemma, in Coq.micromega.ZCoeff]
clt_pos_morph [lemma, in Coq.micromega.ZCoeff]
CMinus [constructor, in Coq.micromega.RMicromega]
CMorphisms [library]
Cmp [definition, in Coq.FSets.FMapInterface]
CmpNotation [module, in Coq.Structures.Orders]
_ ?= _ [notation, in Coq.Structures.Orders]
CmpSpec [module, in Coq.Structures.Orders]
CmpSpec.compare_spec [axiom, in Coq.Structures.Orders]
cmt [constructor, in Coq.funind.Recdef]
CMult [constructor, in Coq.micromega.RMicromega]
cneqb [definition, in Coq.micromega.RingMicromega]
cneqb_sound [lemma, in Coq.micromega.RingMicromega]
cnf [definition, in Coq.micromega.Tauto]
cnf_checker_sound [lemma, in Coq.micromega.Tauto]
cnf_checker [definition, in Coq.micromega.Tauto]
cnf_negate_correct [lemma, in Coq.micromega.RingMicromega]
cnf_negate [definition, in Coq.micromega.RingMicromega]
cnf_normalise_correct [lemma, in Coq.micromega.RingMicromega]
cnf_normalise [definition, in Coq.micromega.RingMicromega]
cO [definition, in Coq.setoid_ring.Ncring_polynom]
coherent [definition, in Coq.Sets.Relations_3]
coherent_symmetric [lemma, in Coq.Sets.Relations_3_facts]
COHERENT_VALUE [section, in Coq.ZArith.Zdigits]
collective_pred [definition, in Coq.ssr.ssrbool]
Color [module, in Coq.MSets.MSetRBT]
color [inductive, in Coq.MSets.MSetRBT]
Color.t [definition, in Coq.MSets.MSetRBT]
Combinators [library]
combine [definition, in Coq.Lists.List]
combine_nth [lemma, in Coq.Lists.List]
combine_length [lemma, in Coq.Lists.List]
combine_split [lemma, in Coq.Lists.List]
comm [lemma, in Coq.setoid_ring.Ncring_tac]
common [abbreviation, in Coq.setoid_ring.Field_theory]
commut [definition, in Coq.Relations.Relation_Definitions]
commutative [definition, in Coq.ssr.ssrfun]
comm_left [lemma, in Coq.Sets.Permut]
comm_right [lemma, in Coq.Sets.Permut]
comp [definition, in Coq.Reals.Ranalysis1]
comp [abbreviation, in Coq.ssr.ssrfun]
comp [abbreviation, in Coq.ssr.ssrfun]
compact [definition, in Coq.Reals.Rtopology]
compact_P6 [lemma, in Coq.Reals.Rtopology]
compact_carac [lemma, in Coq.Reals.Rtopology]
compact_P5 [lemma, in Coq.Reals.Rtopology]
compact_P4 [lemma, in Coq.Reals.Rtopology]
compact_P3 [lemma, in Coq.Reals.Rtopology]
compact_eqDom [lemma, in Coq.Reals.Rtopology]
compact_EMP [lemma, in Coq.Reals.Rtopology]
compact_P2 [lemma, in Coq.Reals.Rtopology]
compact_P1 [lemma, in Coq.Reals.Rtopology]
compare [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
compare [definition, in Coq.Init.Nat]
Compare [inductive, in Coq.Structures.OrderedType]
Compare [library]
CompareBasedOrder [module, in Coq.Structures.OrdersFacts]
CompareBasedOrderFacts [module, in Coq.Structures.OrdersFacts]
CompareBasedOrderFacts.compare_nge_iff [lemma, in Coq.Structures.OrdersFacts]
CompareBasedOrderFacts.compare_nle_iff [lemma, in Coq.Structures.OrdersFacts]
CompareBasedOrderFacts.compare_nlt_iff [lemma, in Coq.Structures.OrdersFacts]
CompareBasedOrderFacts.compare_ngt_iff [lemma, in Coq.Structures.OrdersFacts]
CompareBasedOrderFacts.compare_ge_iff [lemma, in Coq.Structures.OrdersFacts]
CompareBasedOrderFacts.compare_gt_iff [lemma, in Coq.Structures.OrdersFacts]
CompareBasedOrderFacts.compare_refl [lemma, in Coq.Structures.OrdersFacts]
CompareBasedOrderFacts.compare_eq [lemma, in Coq.Structures.OrdersFacts]
CompareBasedOrderFacts.compare_spec [lemma, in Coq.Structures.OrdersFacts]
CompareBasedOrderFacts.lt_eq_cases [lemma, in Coq.Structures.OrdersFacts]
CompareBasedOrderFacts.lt_irrefl [lemma, in Coq.Structures.OrdersFacts]
CompareBasedOrder.compare_antisym [axiom, in Coq.Structures.OrdersFacts]
CompareBasedOrder.compare_le_iff [axiom, in Coq.Structures.OrdersFacts]
CompareBasedOrder.compare_lt_iff [axiom, in Coq.Structures.OrdersFacts]
CompareBasedOrder.compare_eq_iff [axiom, in Coq.Structures.OrdersFacts]
CompareFacts [module, in Coq.Structures.OrdersFacts]
CompareFacts.compare_antisym [lemma, in Coq.Structures.OrdersFacts]
CompareFacts.compare_refl [lemma, in Coq.Structures.OrdersFacts]
CompareFacts.compare_compat [instance, in Coq.Structures.OrdersFacts]
CompareFacts.compare_ngt_iff [lemma, in Coq.Structures.OrdersFacts]
CompareFacts.compare_nlt_iff [lemma, in Coq.Structures.OrdersFacts]
CompareFacts.compare_gt_iff [lemma, in Coq.Structures.OrdersFacts]
CompareFacts.compare_lt_iff [lemma, in Coq.Structures.OrdersFacts]
CompareFacts.compare_eq [lemma, in Coq.Structures.OrdersFacts]
CompareFacts.compare_eq_iff [lemma, in Coq.Structures.OrdersFacts]
_ ?= _ [notation, in Coq.Structures.OrdersFacts]
CompareSpec [inductive, in Coq.Init.Datatypes]
CompareSpecT [inductive, in Coq.Init.Datatypes]
CompareSpec2Type [lemma, in Coq.Init.Datatypes]
Compare_dec [library]
Compare2EqBool [module, in Coq.Structures.Orders]
Compare2EqBool.eqb [definition, in Coq.Structures.Orders]
Compare2EqBool.eqb_eq [lemma, in Coq.Structures.Orders]
compare31 [definition, in Coq.Numbers.Cyclic.Int31.Int31]
comparison [inductive, in Coq.Init.Datatypes]
comparison_eq_stable [lemma, in Coq.Init.Datatypes]
Compatible [definition, in Coq.Sets.Cpo]
compat_op [definition, in Coq.Lists.SetoidList]
compat_P [definition, in Coq.Lists.SetoidList]
compat_nat [definition, in Coq.Lists.SetoidList]
compat_bool [definition, in Coq.Lists.SetoidList]
CompEq [constructor, in Coq.Init.Datatypes]
CompEqT [constructor, in Coq.Init.Datatypes]
CompGt [constructor, in Coq.Init.Datatypes]
CompGtT [constructor, in Coq.Init.Datatypes]
Complement [definition, in Coq.Sets.Relations_1_facts]
complement [definition, in Coq.Classes.CRelationClasses]
complement [definition, in Coq.Classes.RelationClasses]
Complement [definition, in Coq.Sets.Ensembles]
complementary [definition, in Coq.Reals.Rtopology]
complementary_P1 [lemma, in Coq.Reals.Rtopology]
complement_proper [definition, in Coq.Classes.Morphisms]
complement_Symmetric [definition, in Coq.Classes.CRelationClasses]
complement_Irreflexive [definition, in Coq.Classes.CRelationClasses]
complement_inverse [lemma, in Coq.Classes.CRelationClasses]
Complement_Complement [lemma, in Coq.Sets.Classical_sets]
complement_negative [definition, in Coq.Numbers.Cyclic.Int31.Int31]
complement_Symmetric [definition, in Coq.Classes.RelationClasses]
complement_Irreflexive [definition, in Coq.Classes.RelationClasses]
complement_inverse [lemma, in Coq.Classes.RelationClasses]
Complete [section, in Coq.setoid_ring.Field_theory]
Complete [inductive, in Coq.Sets.Cpo]
completeness [axiom, in Coq.Reals.Raxioms]
Completeness [section, in Coq.btauto.Reflect]
completeness_weak [lemma, in Coq.Reals.RIneq]
Complete.AlmostField [section, in Coq.setoid_ring.Field_theory]
Complete.AlmostField.AFth [variable, in Coq.setoid_ring.Field_theory]
Complete.AlmostField.ARth [variable, in Coq.setoid_ring.Field_theory]
Complete.AlmostField.gen_phiPOS_not_0 [variable, in Coq.setoid_ring.Field_theory]
Complete.AlmostField.rdiv_def [variable, in Coq.setoid_ring.Field_theory]
Complete.AlmostField.rinv_l [variable, in Coq.setoid_ring.Field_theory]
Complete.AlmostField.rI_neq_rO [variable, in Coq.setoid_ring.Field_theory]
Complete.AlmostField.S_inj [variable, in Coq.setoid_ring.Field_theory]
Complete.Field [section, in Coq.setoid_ring.Field_theory]
Complete.Field.AFth [variable, in Coq.setoid_ring.Field_theory]
Complete.Field.ARth [variable, in Coq.setoid_ring.Field_theory]
Complete.Field.Fth [variable, in Coq.setoid_ring.Field_theory]
Complete.Field.gen_phiPOS_inject [variable, in Coq.setoid_ring.Field_theory]
Complete.Field.gen_phiPOS_not_0 [variable, in Coq.setoid_ring.Field_theory]
Complete.Field.rdiv_def [variable, in Coq.setoid_ring.Field_theory]
Complete.Field.rinv_l [variable, in Coq.setoid_ring.Field_theory]
Complete.Field.rI_neq_rO [variable, in Coq.setoid_ring.Field_theory]
Complete.Field.Rth [variable, in Coq.setoid_ring.Field_theory]
Complete.R [variable, in Coq.setoid_ring.Field_theory]
Complete.radd [variable, in Coq.setoid_ring.Field_theory]
Complete.rdiv [variable, in Coq.setoid_ring.Field_theory]
Complete.req [variable, in Coq.setoid_ring.Field_theory]
Complete.Reqe [variable, in Coq.setoid_ring.Field_theory]
Complete.rI [variable, in Coq.setoid_ring.Field_theory]
Complete.rinv [variable, in Coq.setoid_ring.Field_theory]
Complete.rmul [variable, in Coq.setoid_ring.Field_theory]
Complete.rO [variable, in Coq.setoid_ring.Field_theory]
Complete.ropp [variable, in Coq.setoid_ring.Field_theory]
Complete.Rsth [variable, in Coq.setoid_ring.Field_theory]
Complete.rsub [variable, in Coq.setoid_ring.Field_theory]
_ == _ [notation, in Coq.setoid_ring.Field_theory]
_ / _ [notation, in Coq.setoid_ring.Field_theory]
_ - _ [notation, in Coq.setoid_ring.Field_theory]
_ * _ [notation, in Coq.setoid_ring.Field_theory]
_ + _ [notation, in Coq.setoid_ring.Field_theory]
- _ [notation, in Coq.setoid_ring.Field_theory]
/ _ [notation, in Coq.setoid_ring.Field_theory]
0 [notation, in Coq.setoid_ring.Field_theory]
1 [notation, in Coq.setoid_ring.Field_theory]
CompLt [constructor, in Coq.Init.Datatypes]
CompLtT [constructor, in Coq.Init.Datatypes]
CompOpp [definition, in Coq.Init.Datatypes]
CompOpp_iff [lemma, in Coq.Init.Datatypes]
CompOpp_inj [lemma, in Coq.Init.Datatypes]
CompOpp_involutive [lemma, in Coq.Init.Datatypes]
compose [definition, in Coq.Program.Basics]
compose_proper [instance, in Coq.Classes.Morphisms]
compose_assoc [lemma, in Coq.Program.Combinators]
compose_id_right [lemma, in Coq.Program.Combinators]
compose_id_left [lemma, in Coq.Program.Combinators]
compose_proper [instance, in Coq.Classes.CMorphisms]
compose0 [lemma, in Coq.rtauto.Rtauto]
compose1 [lemma, in Coq.rtauto.Rtauto]
compose2 [lemma, in Coq.rtauto.Rtauto]
compose3 [lemma, in Coq.rtauto.Rtauto]
Composition [section, in Coq.ssr.ssrfun]
Composition.A [variable, in Coq.ssr.ssrfun]
Composition.B [variable, in Coq.ssr.ssrfun]
Composition.C [variable, in Coq.ssr.ssrfun]
CompSpec [definition, in Coq.Init.Datatypes]
CompSpecT [definition, in Coq.Init.Datatypes]
CompSpec2Type [lemma, in Coq.Init.Datatypes]
Computational [section, in Coq.btauto.Algebra]
Computational [constructor, in Coq.setoid_ring.Ring_theory]
compute_list_correct [lemma, in Coq.nsatz.Nsatz]
compute_list [definition, in Coq.nsatz.Nsatz]
concat [definition, in Coq.Lists.List]
concat_map [lemma, in Coq.Lists.List]
concat_app [lemma, in Coq.Lists.List]
concat_cons [lemma, in Coq.Lists.List]
concat_nil [lemma, in Coq.Lists.List]
condition [projection, in Coq.setoid_ring.Field_theory]
Conditionally_complete [inductive, in Coq.Sets.Cpo]
conditional_eq [definition, in Coq.Program.Equality]
cond_nonzero [projection, in Coq.Reals.RIneq]
cond_neg [projection, in Coq.Reals.RIneq]
cond_nonpos [projection, in Coq.Reals.RIneq]
cond_pos [projection, in Coq.Reals.RIneq]
cond_nonneg [projection, in Coq.Reals.RIneq]
cond_positivity [definition, in Coq.Reals.Rsqrt_def]
cond_pos_sum [lemma, in Coq.Reals.PartSum]
cond_D2 [projection, in Coq.Reals.Ranalysis1]
cond_D1 [projection, in Coq.Reals.Ranalysis1]
cond_diff [projection, in Coq.Reals.Ranalysis1]
cond_fam [projection, in Coq.Reals.Rtopology]
cond_eq [lemma, in Coq.Reals.SeqProp]
Cond0 [definition, in Coq.nsatz.Nsatz]
coneMember [definition, in Coq.micromega.ZMicromega]
Confluent [definition, in Coq.Sets.Relations_3]
confluent [definition, in Coq.Sets.Relations_3]
congr1 [definition, in Coq.ssr.ssrfun]
congr2 [definition, in Coq.ssr.ssrfun]
cong_transitive_same_relation [lemma, in Coq.Sets.Relations_1_facts]
cong_antisymmetric_same_relation [lemma, in Coq.Sets.Relations_1_facts]
cong_symmetric_same_relation [lemma, in Coq.Sets.Relations_1_facts]
cong_reflexive_same_relation [lemma, in Coq.Sets.Relations_1_facts]
cong_congr [lemma, in Coq.Sets.Permut]
conj [constructor, in Coq.Init.Logic]
Conjunct [constructor, in Coq.rtauto.Rtauto]
Conjunction [section, in Coq.Init.Logic]
Conjunction.A [variable, in Coq.Init.Logic]
Conjunction.B [variable, in Coq.Init.Logic]
connectives [section, in Coq.Bool.Sumbool]
connectives.A [variable, in Coq.Bool.Sumbool]
connectives.B [variable, in Coq.Bool.Sumbool]
connectives.C [variable, in Coq.Bool.Sumbool]
connectives.D [variable, in Coq.Bool.Sumbool]
connectives.H1 [variable, in Coq.Bool.Sumbool]
connectives.H2 [variable, in Coq.Bool.Sumbool]
Cons [constructor, in Coq.Lists.Streams]
cons [constructor, in Coq.Reals.RList]
cons [constructor, in Coq.Init.Datatypes]
cons [constructor, in Coq.Vectors.VectorDef]
cons [abbreviation, in Coq.Lists.List]
const [definition, in Coq.Lists.Streams]
const [definition, in Coq.Program.Basics]
const [definition, in Coq.Vectors.VectorDef]
constant [definition, in Coq.Reals.Ranalysis1]
Constant_Stream.a [variable, in Coq.Lists.Streams]
Constant_Stream.A [variable, in Coq.Lists.Streams]
Constant_Stream [section, in Coq.Lists.Streams]
constant_D_eq [definition, in Coq.Reals.Ranalysis1]
ConstructiveDefiniteDescription [abbreviation, in Coq.Logic.ChoiceFacts]
ConstructiveDefiniteDescription_on [definition, in Coq.Logic.ChoiceFacts]
ConstructiveEpsilon [library]
ConstructiveGroundEpsilon [section, in Coq.Logic.ConstructiveEpsilon]
ConstructiveGroundEpsilon_nat.P_decidable [variable, in Coq.Logic.ConstructiveEpsilon]
ConstructiveGroundEpsilon_nat.P [variable, in Coq.Logic.ConstructiveEpsilon]
ConstructiveGroundEpsilon_nat [section, in Coq.Logic.ConstructiveEpsilon]
ConstructiveGroundEpsilon.A [variable, in Coq.Logic.ConstructiveEpsilon]
ConstructiveGroundEpsilon.f [variable, in Coq.Logic.ConstructiveEpsilon]
ConstructiveGroundEpsilon.g [variable, in Coq.Logic.ConstructiveEpsilon]
ConstructiveGroundEpsilon.gof_eq_id [variable, in Coq.Logic.ConstructiveEpsilon]
ConstructiveGroundEpsilon.P [variable, in Coq.Logic.ConstructiveEpsilon]
ConstructiveGroundEpsilon.P_decidable [variable, in Coq.Logic.ConstructiveEpsilon]
ConstructiveIndefiniteDescription [abbreviation, in Coq.Logic.ChoiceFacts]
ConstructiveIndefiniteDescription_on [definition, in Coq.Logic.ChoiceFacts]
ConstructiveIndefiniteGroundDescription_Acc.R [variable, in Coq.Logic.ConstructiveEpsilon]
ConstructiveIndefiniteGroundDescription_Acc.P_decidable [variable, in Coq.Logic.ConstructiveEpsilon]
ConstructiveIndefiniteGroundDescription_Acc.P [variable, in Coq.Logic.ConstructiveEpsilon]
ConstructiveIndefiniteGroundDescription_Acc [section, in Coq.Logic.ConstructiveEpsilon]
ConstructiveIndefiniteGroundDescription_Direct.P_dec [variable, in Coq.Logic.ConstructiveEpsilon]
ConstructiveIndefiniteGroundDescription_Direct.P [variable, in Coq.Logic.ConstructiveEpsilon]
ConstructiveIndefiniteGroundDescription_Direct [section, in Coq.Logic.ConstructiveEpsilon]
constructive_definite_descr_excluded_middle [lemma, in Coq.Logic.ChoiceFacts]
constructive_definite_descr_fun_reification [lemma, in Coq.Logic.ChoiceFacts]
constructive_indefinite_descr_fun_choice [lemma, in Coq.Logic.ChoiceFacts]
constructive_indefinite_description_and_small_drinker_iff_epsilon [lemma, in Coq.Logic.ChoiceFacts]
constructive_indefinite_description_and_small_drinker_imp_epsilon [lemma, in Coq.Logic.ChoiceFacts]
constructive_definite_description [axiom, in Coq.Logic.Description]
constructive_epsilon [abbreviation, in Coq.Logic.ConstructiveEpsilon]
constructive_epsilon_spec [abbreviation, in Coq.Logic.ConstructiveEpsilon]
constructive_definite_description [abbreviation, in Coq.Logic.ConstructiveEpsilon]
constructive_indefinite_description [abbreviation, in Coq.Logic.ConstructiveEpsilon]
constructive_epsilon_nat [abbreviation, in Coq.Logic.ConstructiveEpsilon]
constructive_epsilon_spec_nat [abbreviation, in Coq.Logic.ConstructiveEpsilon]
constructive_indefinite_description_nat [abbreviation, in Coq.Logic.ConstructiveEpsilon]
constructive_ground_epsilon_spec [definition, in Coq.Logic.ConstructiveEpsilon]
constructive_ground_epsilon [definition, in Coq.Logic.ConstructiveEpsilon]
constructive_definite_ground_description [lemma, in Coq.Logic.ConstructiveEpsilon]
constructive_indefinite_ground_description [lemma, in Coq.Logic.ConstructiveEpsilon]
constructive_ground_epsilon_spec_nat [definition, in Coq.Logic.ConstructiveEpsilon]
constructive_ground_epsilon_nat [definition, in Coq.Logic.ConstructiveEpsilon]
constructive_indefinite_ground_description_nat_Acc [lemma, in Coq.Logic.ConstructiveEpsilon]
constructive_indefinite_ground_description_nat [definition, in Coq.Logic.ConstructiveEpsilon]
constructive_definite_description [lemma, in Coq.Logic.IndefiniteDescription]
constructive_indefinite_description [axiom, in Coq.Logic.IndefiniteDescription]
constructive_definite_description [lemma, in Coq.Logic.Epsilon]
constructive_indefinite_description [lemma, in Coq.Logic.Epsilon]
constructive_definite_description [lemma, in Coq.Logic.ClassicalEpsilon]
constructive_indefinite_description [axiom, in Coq.Logic.ClassicalEpsilon]
Constructive_sets [library]
const_nth [lemma, in Coq.Vectors.VectorSpec]
cons_inj [definition, in Coq.Vectors.VectorSpec]
cons_ORlist [definition, in Coq.Reals.RList]
cons_Rlist [definition, in Coq.Reals.RList]
cons_sort [abbreviation, in Coq.Sorting.Sorted]
cons_leA [abbreviation, in Coq.Sorting.Sorted]
contains [definition, in Coq.Sets.Relations_1]
contains_is_preorder [lemma, in Coq.Sets.Relations_1_facts]
contents [definition, in Coq.Sorting.Heap]
contents [projection, in Coq.rtauto.Bintree]
continue_in [definition, in Coq.Reals.Rderiv]
continuity [definition, in Coq.Reals.Ranalysis1]
continuity_seq [lemma, in Coq.Reals.Rsqrt_def]
continuity_implies_RiemannInt [lemma, in Coq.Reals.RiemannInt]
continuity_comp [lemma, in Coq.Reals.Ranalysis1]
continuity_div [lemma, in Coq.Reals.Ranalysis1]
continuity_inv [lemma, in Coq.Reals.Ranalysis1]
continuity_scal [lemma, in Coq.Reals.Ranalysis1]
continuity_const [lemma, in Coq.Reals.Ranalysis1]
continuity_mult [lemma, in Coq.Reals.Ranalysis1]
continuity_minus [lemma, in Coq.Reals.Ranalysis1]
continuity_opp [lemma, in Coq.Reals.Ranalysis1]
continuity_plus [lemma, in Coq.Reals.Ranalysis1]
continuity_pt_comp [lemma, in Coq.Reals.Ranalysis1]
continuity_pt_div [lemma, in Coq.Reals.Ranalysis1]
continuity_pt_inv [lemma, in Coq.Reals.Ranalysis1]
continuity_pt_scal [lemma, in Coq.Reals.Ranalysis1]
continuity_pt_const [lemma, in Coq.Reals.Ranalysis1]
continuity_pt_mult [lemma, in Coq.Reals.Ranalysis1]
continuity_pt_minus [lemma, in Coq.Reals.Ranalysis1]
continuity_pt_opp [lemma, in Coq.Reals.Ranalysis1]
continuity_pt_plus [lemma, in Coq.Reals.Ranalysis1]
continuity_pt_locally_ext [lemma, in Coq.Reals.Ranalysis1]
continuity_pt [definition, in Coq.Reals.Ranalysis1]
continuity_ab_min [lemma, in Coq.Reals.Rtopology]
continuity_ab_maj [lemma, in Coq.Reals.Rtopology]
continuity_compact [lemma, in Coq.Reals.Rtopology]
continuity_P3 [lemma, in Coq.Reals.Rtopology]
continuity_P2 [lemma, in Coq.Reals.Rtopology]
continuity_P1 [lemma, in Coq.Reals.Rtopology]
continuity_pt_sqrt [lemma, in Coq.Reals.Sqrt_reg]
continuity_sin [lemma, in Coq.Reals.Rtrigo_reg]
continuity_cos [lemma, in Coq.Reals.Rtrigo1]
continuity_finite_sum [lemma, in Coq.Reals.Ranalysis4]
continuity_pt_finite_SF [lemma, in Coq.Reals.PSeries_reg]
continuity_pt_recip_interv [lemma, in Coq.Reals.Ranalysis5]
continuity_pt_recip_prelim [lemma, in Coq.Reals.Ranalysis5]
continuous_neq_0 [lemma, in Coq.Reals.Ranalysis2]
contra [lemma, in Coq.ssr.ssrbool]
contraFF [lemma, in Coq.ssr.ssrbool]
contraFN [lemma, in Coq.ssr.ssrbool]
contraFT [lemma, in Coq.ssr.ssrbool]
contraL [lemma, in Coq.ssr.ssrbool]
contraLR [lemma, in Coq.ssr.ssrbool]
contraNF [lemma, in Coq.ssr.ssrbool]
contraNN [definition, in Coq.ssr.ssrbool]
contraNT [definition, in Coq.ssr.ssrbool]
contrapositive [lemma, in Coq.Logic.Decidable]
contraR [lemma, in Coq.ssr.ssrbool]
contraT [lemma, in Coq.ssr.ssrbool]
contraTF [lemma, in Coq.ssr.ssrbool]
contraTN [definition, in Coq.ssr.ssrbool]
contraTT [definition, in Coq.ssr.ssrbool]
cont_deriv [lemma, in Coq.Reals.Rderiv]
cont1 [projection, in Coq.Reals.RiemannInt]
Converse [section, in Coq.Relations.Relation_Operators]
Converse.A [variable, in Coq.Relations.Relation_Operators]
Converse.R [variable, in Coq.Relations.Relation_Operators]
COpp [constructor, in Coq.micromega.RMicromega]
Coq85 [library]
Coq86 [library]
Corollaries [section, in Coq.Logic.EqdepFacts]
Corollaries.U [variable, in Coq.Logic.EqdepFacts]
cos [definition, in Coq.Reals.Rtrigo_def]
COS [lemma, in Coq.Reals.Rtrigo1]
cosd [definition, in Coq.Reals.Rtrigo_calc]
cosh [definition, in Coq.Reals.Rtrigo_def]
cosh_0 [lemma, in Coq.Reals.Rtrigo_def]
cosn_no_R0 [lemma, in Coq.Reals.Rtrigo_def]
cos_5PI4 [lemma, in Coq.Reals.Rtrigo_calc]
cos_2PI3 [lemma, in Coq.Reals.Rtrigo_calc]
cos_PI3 [lemma, in Coq.Reals.Rtrigo_calc]
cos_PI6 [lemma, in Coq.Reals.Rtrigo_calc]
cos_PI4 [lemma, in Coq.Reals.Rtrigo_calc]
cos_0 [lemma, in Coq.Reals.Rtrigo_def]
cos_sym [lemma, in Coq.Reals.Rtrigo_def]
cos_in [definition, in Coq.Reals.Rtrigo_def]
cos_n [definition, in Coq.Reals.Rtrigo_def]
cos_approx [definition, in Coq.Reals.Rtrigo_alt]
cos_term [definition, in Coq.Reals.Rtrigo_alt]
cos_eq_0_2PI_1 [lemma, in Coq.Reals.Rtrigo1]
cos_eq_0_2PI_0 [lemma, in Coq.Reals.Rtrigo1]
cos_eq_0_1 [lemma, in Coq.Reals.Rtrigo1]
cos_eq_0_0 [lemma, in Coq.Reals.Rtrigo1]
cos_decr_1 [lemma, in Coq.Reals.Rtrigo1]
cos_decr_0 [lemma, in Coq.Reals.Rtrigo1]
cos_incr_1 [lemma, in Coq.Reals.Rtrigo1]
cos_incr_0 [lemma, in Coq.Reals.Rtrigo1]
cos_decreasing_1 [lemma, in Coq.Reals.Rtrigo1]
cos_decreasing_0 [lemma, in Coq.Reals.Rtrigo1]
cos_increasing_1 [lemma, in Coq.Reals.Rtrigo1]
cos_increasing_0 [lemma, in Coq.Reals.Rtrigo1]
cos_ge_0_3PI2 [lemma, in Coq.Reals.Rtrigo1]
cos_lt_0 [lemma, in Coq.Reals.Rtrigo1]
cos_le_0 [lemma, in Coq.Reals.Rtrigo1]
cos_ge_0 [lemma, in Coq.Reals.Rtrigo1]
cos_gt_0 [lemma, in Coq.Reals.Rtrigo1]
cos_ub [definition, in Coq.Reals.Rtrigo1]
cos_lb [definition, in Coq.Reals.Rtrigo1]
cos_sin_0_var [lemma, in Coq.Reals.Rtrigo1]
cos_sin_0 [lemma, in Coq.Reals.Rtrigo1]
COS_bound [lemma, in Coq.Reals.Rtrigo1]
cos_sin [lemma, in Coq.Reals.Rtrigo1]
cos_shift [lemma, in Coq.Reals.Rtrigo1]
cos_period [lemma, in Coq.Reals.Rtrigo1]
cos_2PI [lemma, in Coq.Reals.Rtrigo1]
cos_3PI2 [lemma, in Coq.Reals.Rtrigo1]
cos_neg [lemma, in Coq.Reals.Rtrigo1]
cos_2a_sin [lemma, in Coq.Reals.Rtrigo1]
cos_2a_cos [lemma, in Coq.Reals.Rtrigo1]
cos_2a [lemma, in Coq.Reals.Rtrigo1]
cos_bound [lemma, in Coq.Reals.Rtrigo1]
cos_PI [lemma, in Coq.Reals.Rtrigo1]
cos_PI2 [lemma, in Coq.Reals.Rtrigo1]
cos_minus [lemma, in Coq.Reals.Rtrigo1]
cos_pi2 [lemma, in Coq.Reals.Rtrigo1]
cos_plus_form [lemma, in Coq.Reals.Cos_rel]
cos_plus [lemma, in Coq.Reals.Cos_plus]
Cos_plus [library]
Cos_rel [library]
cos2 [lemma, in Coq.Reals.Rtrigo1]
cos3PI4 [lemma, in Coq.Reals.Rtrigo_calc]
count_occ_map [lemma, in Coq.Lists.List]
count_occ_cons_neq [lemma, in Coq.Lists.List]
count_occ_cons_eq [lemma, in Coq.Lists.List]
count_occ_inv_nil [lemma, in Coq.Lists.List]
count_occ_nil [lemma, in Coq.Lists.List]
count_occ_not_In [lemma, in Coq.Lists.List]
count_occ_In [lemma, in Coq.Lists.List]
count_occ [definition, in Coq.Lists.List]
Couple [inductive, in Coq.Sets.Ensembles]
Couple_inv [lemma, in Coq.Sets.Constructive_sets]
Couple_r [constructor, in Coq.Sets.Ensembles]
Couple_l [constructor, in Coq.Sets.Ensembles]
Couple_as_union [lemma, in Coq.Sets.Powerset_facts]
covering [definition, in Coq.Reals.Rtopology]
covering_finite [definition, in Coq.Reals.Rtopology]
covering_open_set [definition, in Coq.Reals.Rtopology]
covers [inductive, in Coq.Sets.Partial_Order]
covers_is_Add [lemma, in Coq.Sets.Powerset_Classical_facts]
covers_Add [lemma, in Coq.Sets.Powerset_Classical_facts]
co_interval [definition, in Coq.Reals.RiemannInt_SF]
CPlus [constructor, in Coq.micromega.RMicromega]
Cpo [record, in Coq.Sets.Cpo]
Cpo [library]
Cpo_cond [projection, in Coq.Sets.Cpo]
CQ [constructor, in Coq.micromega.RMicromega]
crelation [definition, in Coq.Classes.CRelationClasses]
CRelationClasses [library]
cring [section, in Coq.setoid_ring.Cring]
Cring [record, in Coq.setoid_ring.Cring]
Cring [inductive, in Coq.setoid_ring.Cring]
Cring [library]
cring_div_theory [lemma, in Coq.setoid_ring.Cring]
cring_power_theory [lemma, in Coq.setoid_ring.Cring]
cring_morph [lemma, in Coq.setoid_ring.Cring]
cring_almost_ring_theory [lemma, in Coq.setoid_ring.Cring]
cring_eq_ext [lemma, in Coq.setoid_ring.Cring]
cring_mul_comm [projection, in Coq.setoid_ring.Cring]
cring_mul_comm [constructor, in Coq.setoid_ring.Cring]
cross_product_eq [lemma, in Coq.setoid_ring.Field_theory]
Cst [constructor, in Coq.btauto.Algebra]
cstlist [definition, in Coq.Numbers.Cyclic.Int31.Cyclic31]
ctx [definition, in Coq.rtauto.Rtauto]
Cut [constructor, in Coq.rtauto.Rtauto]
CutProof [constructor, in Coq.micromega.ZMicromega]
Cutting [section, in Coq.Lists.List]
cutting_plane_sound [lemma, in Coq.micromega.ZMicromega]
Cutting.A [variable, in Coq.Lists.List]
CVN_R_sin [lemma, in Coq.Reals.Rtrigo_reg]
CVN_R_cos [lemma, in Coq.Reals.Rtrigo1]
CVN_R_CVS [lemma, in Coq.Reals.PSeries_reg]
CVN_CVU [lemma, in Coq.Reals.PSeries_reg]
CVN_R [definition, in Coq.Reals.PSeries_reg]
CVN_r [definition, in Coq.Reals.PSeries_reg]
CVU [definition, in Coq.Reals.PSeries_reg]
CVU_derivable [lemma, in Coq.Reals.PSeries_reg]
CVU_ext_lim [lemma, in Coq.Reals.PSeries_reg]
CVU_cv [lemma, in Coq.Reals.PSeries_reg]
CVU_continuity [lemma, in Coq.Reals.PSeries_reg]
cv_pow_half [lemma, in Coq.Reals.Rsqrt_def]
cv_dicho [lemma, in Coq.Reals.Rsqrt_def]
cv_cauchy_2 [lemma, in Coq.Reals.PartSum]
cv_cauchy_1 [lemma, in Coq.Reals.PartSum]
CV_ALT [lemma, in Coq.Reals.AltSeries]
CV_ALT_step4 [lemma, in Coq.Reals.AltSeries]
CV_ALT_step3 [lemma, in Coq.Reals.AltSeries]
CV_ALT_step2 [lemma, in Coq.Reals.AltSeries]
CV_ALT_step1 [lemma, in Coq.Reals.AltSeries]
CV_ALT_step0 [lemma, in Coq.Reals.AltSeries]
cv_speed_pow_fact [lemma, in Coq.Reals.SeqProp]
cv_infty_cv_R0 [lemma, in Coq.Reals.SeqProp]
cv_infty [definition, in Coq.Reals.SeqProp]
CV_minus [lemma, in Coq.Reals.SeqProp]
CV_opp [lemma, in Coq.Reals.SeqProp]
CV_mult [lemma, in Coq.Reals.SeqProp]
CV_Cauchy [lemma, in Coq.Reals.SeqProp]
cv_cvabs [lemma, in Coq.Reals.SeqProp]
CV_plus [lemma, in Coq.Reals.SeqProp]
CV_shift' [lemma, in Coq.Reals.Rseries]
CV_shift [lemma, in Coq.Reals.Rseries]
CyclicAxioms [library]
CyclicRing [module, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
CyclicRing.add_opp_diag_r [lemma, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
CyclicRing.add_opp_r [lemma, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
CyclicRing.add_assoc [lemma, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
CyclicRing.add_comm [lemma, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
CyclicRing.add_0_l [lemma, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
CyclicRing.CyclicRing [lemma, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
CyclicRing.eq [definition, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
CyclicRing.eqb [definition, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
CyclicRing.eqb_correct [lemma, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
CyclicRing.eqb_eq [lemma, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
CyclicRing.mul_add_distr_r [lemma, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
CyclicRing.mul_assoc [lemma, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
CyclicRing.mul_comm [lemma, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
CyclicRing.mul_1_l [lemma, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
CyclicRing.wB [abbreviation, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
_ * _ [notation, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
_ - _ [notation, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
_ + _ [notation, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
_ == _ [notation, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
- _ [notation, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
0 [notation, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
1 [notation, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
[| _ |] [notation, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
CyclicType [module, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
CyclicType.ops [instance, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
CyclicType.specs [instance, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
CyclicType.t [axiom, in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
Cyclic31 [library]
CZ [constructor, in Coq.micromega.RMicromega]
C_maj [lemma, in Coq.Reals.Rprod]
c_sqrt [constructor, in Coq.ZArith.Zsqrt_compat]
C0 [constructor, in Coq.micromega.RMicromega]
C0 [constructor, in Coq.Numbers.Cyclic.Abstract.DoubleType]
C1 [constructor, in Coq.micromega.RMicromega]
c1 [projection, in Coq.Reals.RiemannInt]
C1 [constructor, in Coq.Numbers.Cyclic.Abstract.DoubleType]
C1 [definition, in Coq.Reals.Cos_rel]
C1_fun [record, in Coq.Reals.RiemannInt]
C1_cvg [lemma, in Coq.Reals.Cos_rel]



Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (21445 entries)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (889 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (714 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1464 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (482 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (10031 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (663 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (537 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (374 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (285 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (457 entries)
Instance Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (616 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1328 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (3468 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (137 entries)