Module Declarations
This module defines the internal representation of global declarations. This includes global constants/axioms, mutual inductive definitions, modules and module types
type set_predicativity
=
|
ImpredicativeSet
|
PredicativeSet
type engagement
= set_predicativity
Representation of constants (Definition/Axiom)
type template_arity
=
{
template_param_levels : Univ.Level.t option list;
template_level : Univ.Universe.t;
}
type ('a, 'b) declaration_arity
=
|
RegularArity of 'a
|
TemplateArity of 'b
type 'a constant_def
=
|
Undef of inline
a global assumption
|
Def of 'a
or a transparent global definition
|
OpaqueDef of Opaqueproof.opaque
or an opaque global definition
|
Primitive of CPrimitives.t
or a primitive operation
type universes
=
|
Monomorphic of Univ.ContextSet.t
|
Polymorphic of Univ.AUContext.t
type typing_flags
=
{
check_guarded : bool;
If
false
then fixed points and co-fixed points are assumed to be total.check_universes : bool;
If
false
universe constraints are not checkedconv_oracle : Conv_oracle.oracle;
Unfolding strategies for conversion
share_reduction : bool;
Use by-need reduction algorithm
enable_VM : bool;
If
false
, all VM conversions fall back to interpreted onesenable_native_compiler : bool;
If
false
, all native conversions fall back to VM onesindices_matter : bool;
The universe of an inductive type must be above that of its indices.
}
The
typing_flags
are instructions to the type-checker which modify its behaviour. The typing flags used in the type-checking of a constant are tracked in theirconstant_body
so that they can be displayed to the user.
type constant_body
=
{
const_hyps : Constr.named_context;
New: younger hyp at top
const_body : Constr.t Mod_subst.substituted constant_def;
const_type : Constr.types;
const_relevance : Sorts.relevance;
const_body_code : Cemitcodes.to_patch_substituted option;
const_universes : universes;
const_private_poly_univs : Univ.ContextSet.t option;
const_inline_code : bool;
const_typing_flags : typing_flags;
The typing options which were used for type-checking.
}
Representation of mutual inductive types in the kernel
type recarg
=
|
Norec
|
Mrec of Names.inductive
|
Imbr of Names.inductive
type wf_paths
= recarg Rtree.t
type record_info
=
|
NotRecord
|
FakeRecord
|
PrimRecord of (Names.Id.t * Names.Label.t array * Sorts.relevance array * Constr.types array) array
type regular_inductive_arity
=
{
mind_user_arity : Constr.types;
mind_sort : Sorts.t;
}
type inductive_arity
= (regular_inductive_arity, template_arity) declaration_arity
type one_inductive_body
=
{
mind_typename : Names.Id.t;
Name of the type:
Ii
mind_arity_ctxt : Constr.rel_context;
Arity context of
Ii
with parameters:forall params, Ui
mind_arity : inductive_arity;
Arity sort and original user arity
mind_consnames : Names.Id.t array;
Names of the constructors:
cij
mind_user_lc : Constr.types array;
Types of the constructors with parameters:
forall params, Tij
, where the Ik are replaced by de Bruijn index in the context I1:forall params, U1 .. In:forall params, Unmind_nrealargs : int;
Number of expected real arguments of the type (no let, no params)
mind_nrealdecls : int;
Length of realargs context (with let, no params)
mind_kelim : Sorts.family list;
List of allowed elimination sorts
mind_nf_lc : (Constr.rel_context * Constr.types) array;
Head normalized constructor types so that their conclusion exposes the inductive type
mind_consnrealargs : int array;
Number of expected proper arguments of the constructors (w/o params)
mind_consnrealdecls : int array;
Length of the signature of the constructors (with let, w/o params)
mind_recargs : wf_paths;
Signature of recursive arguments in the constructors
mind_relevance : Sorts.relevance;
mind_nb_constant : int;
number of constant constructor
mind_nb_args : int;
number of no constant constructor
mind_reloc_tbl : Vmvalues.reloc_table;
}
type recursivity_kind
=
|
Finite
= inductive
|
CoFinite
= coinductive
|
BiFinite
= non-recursive, like in "Record" definitions
type mutual_inductive_body
=
{
mind_packets : one_inductive_body array;
The component of the mutual inductive block
mind_record : record_info;
The record information
mind_finite : recursivity_kind;
Whether the type is inductive or coinductive
mind_ntypes : int;
Number of types in the block
mind_hyps : Constr.named_context;
Section hypotheses on which the block depends
mind_nparams : int;
Number of expected parameters including non-uniform ones (i.e. length of mind_params_ctxt w/o let-in)
mind_nparams_rec : int;
Number of recursively uniform (i.e. ordinary) parameters
mind_params_ctxt : Constr.rel_context;
The context of parameters (includes let-in declaration)
mind_universes : universes;
Information about monomorphic/polymorphic/cumulative inductives and their universes
mind_variance : Univ.Variance.t array option;
Variance info,
None
when non-cumulative.mind_private : bool option;
allow pattern-matching: Some true ok, Some false blocked
mind_typing_flags : typing_flags;
typing flags at the time of the inductive creation
}
Module declarations
type ('ty, 'a) functorize
=
|
NoFunctor of 'a
|
MoreFunctor of Names.MBId.t * 'ty * ('ty, 'a) functorize
type with_declaration
=
|
WithMod of Names.Id.t list * Names.ModPath.t
|
WithDef of Names.Id.t list * Constr.constr * Univ.AUContext.t option
type module_alg_expr
=
|
MEident of Names.ModPath.t
|
MEapply of module_alg_expr * Names.ModPath.t
|
MEwith of module_alg_expr * with_declaration
type structure_field_body
=
|
SFBconst of constant_body
|
SFBmind of mutual_inductive_body
|
SFBmodule of module_body
|
SFBmodtype of module_type_body
and structure_body
= (Names.Label.t * structure_field_body) list
and module_signature
= (module_type_body, structure_body) functorize
and module_expression
= (module_type_body, module_alg_expr) functorize
and module_implementation
=
|
Abstract
no accessible implementation
|
Algebraic of module_expression
non-interactive algebraic expression
|
Struct of module_signature
interactive body
|
FullStruct
special case of
Struct
: the body is exactlymod_type
and 'a generic_module_body
=
{
mod_mp : Names.ModPath.t;
absolute path of the module
mod_expr : 'a;
implementation
mod_type : module_signature;
expanded type
mod_type_alg : module_expression option;
algebraic type
mod_constraints : Univ.ContextSet.t;
set of all universes constraints in the module
mod_delta : Mod_subst.delta_resolver;
quotiented set of equivalent constants and inductive names
mod_retroknowledge : 'a module_retroknowledge;
}
and module_body
= module_implementation generic_module_body
and module_type_body
= unit generic_module_body
and _ module_retroknowledge
=
|
ModBodyRK : Retroknowledge.action list -> module_implementation module_retroknowledge
|
ModTypeRK : unit module_retroknowledge