Module Cc_plugin.Ccalgo
type pa_constructor
=
{
cnode : int;
arity : int;
args : int list;
}
type pa_fun
=
{
fsym : int;
fnargs : int;
}
module PacMap : CSig.MapS with type key = pa_constructor
type cinfo
=
{
ci_constr : Constr.pconstructor;
ci_arity : int;
ci_nhyps : int;
}
type term
=
|
Symb of Constr.constr
|
Product of Sorts.t * Sorts.t
|
Eps of Names.Id.t
|
Appli of term * term
|
Constructor of cinfo
module Constrhash : Stdlib.Hashtbl.S with type Constrhash.key = Constr.constr
type ccpattern
=
|
PApp of term * ccpattern list
|
PVar of int
type rule
=
|
Congruence
|
Axiom of Constr.constr * bool
|
Injection of int * pa_constructor * int * pa_constructor * int
type from
=
|
Goal
|
Hyp of Constr.constr
|
HeqG of Constr.constr
|
HeqnH of Constr.constr * Constr.constr
type 'a eq
=
{
lhs : int;
rhs : int;
rule : 'a;
}
type equality
= rule eq
type disequality
= from eq
type patt_kind
=
|
Normal
|
Trivial of Constr.types
|
Creates_variables
type quant_eq
=
{
qe_hyp_id : Names.Id.t;
qe_pol : bool;
qe_nvars : int;
qe_lhs : ccpattern;
qe_lhs_valid : patt_kind;
qe_rhs : ccpattern;
qe_rhs_valid : patt_kind;
}
type inductive_status
=
|
Unknown
|
Partial of pa_constructor
|
Partial_applied
|
Total of int * pa_constructor
type representative
=
{
mutable weight : int;
mutable lfathers : Int.Set.t;
mutable fathers : Int.Set.t;
mutable inductive_status : inductive_status;
class_type : Constr.types;
mutable functions : Int.Set.t PafMap.t;
}
type cl
=
|
Rep of representative
|
Eqto of int * equality
type vertex
=
|
Leaf
|
Node of int * int
type node
=
{
mutable clas : cl;
mutable cpath : int;
mutable constructors : int PacMap.t;
vertex : vertex;
term : term;
}
type forest
=
{
mutable max_size : int;
mutable size : int;
mutable map : node array;
axioms : (term * term) Constrhash.t;
mutable epsilons : pa_constructor list;
syms : int Termhash.t;
}
type state
type explanation
=
|
Discrimination of int * pa_constructor * int * pa_constructor
|
Contradiction of disequality
|
Incomplete
type matching_problem
val term_equal : term -> term -> bool
val constr_of_term : term -> Constr.constr
val debug : (unit -> Pp.t) -> unit
val forest : state -> forest
val axioms : forest -> (term * term) Constrhash.t
val epsilons : forest -> pa_constructor list
val empty : int -> Goal.goal Evd.sigma -> state
val add_term : state -> term -> int
val add_equality : state -> Constr.constr -> term -> term -> unit
val add_disequality : state -> from -> term -> term -> unit
val add_quant : state -> Names.Id.t -> bool -> (int * patt_kind * ccpattern * patt_kind * ccpattern) -> unit
val tail_pac : pa_constructor -> pa_constructor
val find : forest -> int -> int
val find_oldest_pac : forest -> int -> pa_constructor -> int
val term : forest -> int -> term
val get_constructor_info : forest -> int -> cinfo
val subterms : forest -> int -> int * int
val join_path : forest -> int -> int -> ((int * int) * equality) list * ((int * int) * equality) list
val make_fun_table : state -> Int.Set.t PafMap.t
val do_match : state -> (quant_eq * int array) list Stdlib.ref -> matching_problem Util.Stack.t -> unit
val init_pb_stack : state -> matching_problem Util.Stack.t
val paf_of_patt : int Termhash.t -> ccpattern -> pa_fun
val find_instances : state -> (quant_eq * int array) list
val execute : bool -> state -> explanation option
val pr_idx_term : Environ.env -> Evd.evar_map -> forest -> int -> Pp.t
val empty_forest : unit -> forest