Module Lemmas
Proofs attached to a constant
val set_endline_tactic : Genarg.glob_generic_argument -> t -> t
set_endline_tactic tac lemma
set ending tactic forlemma
val pf_map : (Proof_global.t -> Proof_global.t) -> t -> t
pf_map f l
map the underlying proof object
val pf_fold : (Proof_global.t -> 'a) -> t -> 'a
pf_fold f l
fold over the underlying proof object
val by : unit Proofview.tactic -> t -> t * bool
by tac l
apply a tactic tol
module Proof_ending : sig ... end
Creating high-level proofs with an associated constant
module Recthm : sig ... end
module Info : sig ... end
val start_lemma : name:Names.Id.t -> poly:bool -> ?udecl:UState.universe_decl -> ?info:Info.t -> Evd.evar_map -> EConstr.types -> t
Starts the proof of a constant
val start_dependent_lemma : name:Names.Id.t -> poly:bool -> ?udecl:UState.universe_decl -> ?info:Info.t -> Proofview.telescope -> t
val start_lemma_with_initialization : ?hook:DeclareDef.Hook.t -> poly:bool -> scope:DeclareDef.locality -> kind:Decls.logical_kind -> udecl:UState.universe_decl -> Evd.evar_map -> (bool * lemma_possible_guards * unit Proofview.tactic list option) option -> Recthm.t list -> int list option -> t
Pretty much internal, only used in ComFixpoint
val default_thm_id : Names.Id.t
Saving proofs
val save_lemma_admitted : lemma:t -> unit
val save_lemma_proved : lemma:t -> opaque:Proof_global.opacity_flag -> idopt:Names.lident option -> unit
module Internal : sig ... end
To be removed, don't use!
val save_lemma_admitted_delayed : proof:Proof_global.proof_object -> info:Info.t -> unit
Special cases for delayed proofs, in this case we must provide the proof information so the proof won't be forced.
val save_lemma_proved_delayed : proof:Proof_global.proof_object -> info:Info.t -> idopt:Names.lident option -> unit