Record types¶
The Record
construction is a macro allowing the definition of
records as is done in many programming languages. Its syntax is
described in the grammar below. In fact, the Record
macro is more general
than the usual record types, since it allows also for “manifest”
expressions. In this sense, the Record
construction allows defining
“signatures”.
-
Command
RecordStructure record_definition with record_definition*
¶ - record_definition
::=
>? ident_decl binder* : type? ident? { record_field*; } decl_notations?record_field::=
#[ attribute*, ]* name field_body? | num? decl_notations?field_body::=
binder* of_type|
binder* of_type := term|
binder* := termterm_record::=
{| field_def* |}field_def::=
qualid binder* := termEach
record_definition
defines a record named byident_decl
. The constructor name is given byident
. If the constructor name is not specified, then the default nameBuild_ident
is used, whereident
is the record name.If
type
is omitted, the default type is \(\Type\). The identifiers inside the brackets are the field names. The type of each fieldident
isforall binder*, type
. Notice that the type of an identifier can depend on a previously-given identifier. Thus the order of the fields is important.binder
parameters may be applied to the record as a whole or to individual fields.Notations can be attached to fields using the
decl_notations
annotation.Record
andStructure
are synonyms.This command supports the
universes(polymorphic)
,universes(monomorphic)
,universes(template)
,universes(notemplate)
,universes(cumulative)
,universes(noncumulative)
andprivate(matching)
attributes.
More generally, a record may have explicitly defined (a.k.a. manifest)
fields. For instance, we might have:
Record ident binder* : sort := { ident1 : type1 ; ident2 := term2 ; ident3 : type3 }
.
in which case the correctness of type3
may rely on the instance term2
of ident2
and term2
may in turn depend on ident1
.
Example
The set of rational numbers may be defined as:
- Record Rat : Set := mkRat { sign : bool ; top : nat ; bottom : nat ; Rat_bottom_cond : 0 <> bottom ; Rat_irred_cond : forall x y z:nat, (x * y) = top /\ (x * z) = bottom -> x = 1 }.
- Rat is defined sign is defined top is defined bottom is defined Rat_bottom_cond is defined Rat_irred_cond is defined
Note here that the fields Rat_bottom_cond
depends on the field bottom
and Rat_irred_cond
depends on both top
and bottom
.
Let us now see the work done by the Record
macro. First the macro
generates a variant type definition with just one constructor:
Variant ident binder* : sort := ident0 binder*
.
To build an object of type ident
, one should provide the constructor
ident0
with the appropriate number of terms filling the fields of the record.
Example
Let us define the rational \(1/2\):
- Theorem one_two_irred : forall x y z:nat, x * y = 1 /\ x * z = 2 -> x = 1.
- 1 subgoal ============================ forall x y z : nat, x * y = 1 /\ x * z = 2 -> x = 1
- Admitted.
- one_two_irred is declared
- Definition half := mkRat true 1 2 (O_S 1) one_two_irred.
- half is defined
- Check half.
- half : Rat
Alternatively, the following syntax allows creating objects by using named fields, as shown in this grammar. The fields do not have to be in any particular order, nor do they have to be all present if the missing ones can be inferred or prompted for (see Program).
- Definition half' := {| sign := true; Rat_bottom_cond := O_S 1; Rat_irred_cond := one_two_irred |}.
- half' is defined
The following settings let you control the display format for types:
-
Flag
Printing Records
¶ If set, use the record syntax (shown above) as the default display format.
You can override the display format for specified types by adding entries to these tables:
-
Table
Printing Record qualid
¶ Specifies a set of qualids which are displayed as records. Use the
Add
andRemove
commands to update the set of qualids.
-
Table
Printing Constructor qualid
¶ Specifies a set of qualids which are displayed as constructors. Use the
Add
andRemove
commands to update the set of qualids.
This syntax can also be used for pattern matching.
- Eval compute in ( match half with | {| sign := true; top := n |} => n | _ => 0 end).
- = 1 : nat
The macro generates also, when it is possible, the projection
functions for destructuring an object of type ident
. These
projection functions are given the names of the corresponding
fields. If a field is named _
then no projection is built
for it. In our example:
- Eval compute in top half.
- = 1 : nat
- Eval compute in bottom half.
- = 2 : nat
- Eval compute in Rat_bottom_cond half.
- = O_S 1 : 0 <> bottom half
An alternative syntax for projections based on a dot notation is available:
- Eval compute in half.(top).
- = 1 : nat
-
Flag
Printing Projections
¶ This flag activates the dot notation for printing.
Example
- Set Printing Projections.
- Check top half.
- half.(top) : nat
The corresponding grammar rules are given in the preceding grammar. When qualid
denotes a projection, the syntax term0.(qualid)
is equivalent to qualid term0
,
the syntax term0.(qualid arg+)
to qualid arg+ term0
.
and the syntax term0.(@qualid term0+)
to @qualid term0+ term0
.
In each case, term0
is the object projected and the
other arguments are the parameters of the inductive type.
Note
Records defined with the Record
keyword are not allowed to be
recursive (references to the record's name in the type of its field
raises an error). To define recursive records, one can use the Inductive
and CoInductive
keywords, resulting in an inductive or co-inductive record.
Definition of mutually inductive or co-inductive records are also allowed, as long
as all of the types in the block are records.
Note
Induction schemes are automatically generated for inductive records.
Automatic generation of induction schemes for non-recursive records
defined with the Record
keyword can be activated with the
Nonrecursive Elimination Schemes
flag (see Generation of induction principles with Scheme).
-
Warning
ident cannot be defined.
¶ It can happen that the definition of a projection is impossible. This message is followed by an explanation of this impossibility. There may be three reasons:
-
Error
Records declared with the keyword Record or Structure cannot be recursive.
¶ The record name
ident
appears in the type of its fields, but uses the keywordRecord
. Use the keywordInductive
orCoInductive
instead.
-
Error
Cannot handle mutually (co)inductive records.
¶ Records cannot be defined as part of mutually inductive (or co-inductive) definitions, whether with records only or mixed with standard definitions.
During the definition of the one-constructor inductive definition, all the errors of inductive definitions, as described in Section Inductive types, may also occur.
See also
Coercions and records in section Classes as Records of the chapter devoted to coercions.
Primitive Projections¶
-
Flag
Primitive Projections
¶ Turns on the use of primitive projections when defining subsequent records (even through the
Inductive
andCoInductive
commands). Primitive projections extended the Calculus of Inductive Constructions with a new binary term constructorr.(p)
representing a primitive projectionp
applied to a record objectr
(i.e., primitive projections are always applied). Even if the record type has parameters, these do not appear in the internal representation of applications of the projection, considerably reducing the sizes of terms when manipulating parameterized records and type checking time. On the user level, primitive projections can be used as a replacement for the usual defined ones, although there are a few notable differences.
-
Flag
Printing Primitive Projection Parameters
¶ This compatibility flag reconstructs internally omitted parameters at printing time (even though they are absent in the actual AST manipulated by the kernel).
Primitive Record Types¶
When the Primitive Projections
flag is on, definitions of
record types change meaning. When a type is declared with primitive
projections, its match
construct is disabled (see Primitive Projections though).
To eliminate the (co-)inductive type, one must use its defined primitive projections.
For compatibility, the parameters still appear to the user when
printing terms even though they are absent in the actual AST
manipulated by the kernel. This can be changed by unsetting the
Printing Primitive Projection Parameters
flag.
There are currently two ways to introduce primitive records types:
Through the
Record
command, in which case the type has to be non-recursive. The defined type enjoys eta-conversion definitionally, that is the generalized form of surjective pairing for records:r
= Build_
R
(
r
.(
p
\(_{1}\)) …
r
.(
p
\(_{n}\)))
. Eta-conversion allows to define dependent elimination for these types as well.Through the
Inductive
andCoInductive
commands, when the body of the definition is a record declaration of the formBuild_
R
{
p
\(_{1}\):
t
\(_{1}\); … ;
p
\(_{n}\):
t
\(_{n}\)}
. In this case the types can be recursive and eta-conversion is disallowed. These kind of record types differ from their traditional versions in the sense that dependent elimination is not available for them and only non-dependent case analysis can be defined.
Reduction¶
The basic reduction rule of a primitive projection is
p
\(_{i}\) (Build_
R
t
\(_{1}\) … t
\(_{n}\))
\({\rightarrow_{\iota}}\) t
\(_{i}\).
However, to take the \({\delta}\) flag into
account, projections can be in two states: folded or unfolded. An
unfolded primitive projection application obeys the rule above, while
the folded version delta-reduces to the unfolded version. This allows to
precisely mimic the usual unfolding rules of constants. Projections
obey the usual simpl
flags of the Arguments
command in particular.
There is currently no way to input unfolded primitive projections at the
user-level, and there is no way to display unfolded projections differently
from folded ones.
Compatibility Projections and match
¶
To ease compatibility with ordinary record types, each primitive
projection is also defined as a ordinary constant taking parameters and
an object of the record type as arguments, and whose body is an
application of the unfolded primitive projection of the same name. These
constants are used when elaborating partial applications of the
projection. One can distinguish them from applications of the primitive
projection if the Printing Primitive Projection Parameters
flag
is off: For a primitive projection application, parameters are printed
as underscores while for the compatibility projections they are printed
as usual.
Additionally, user-written match
constructs on primitive records
are desugared into substitution of the projections, they cannot be
printed back as match
constructs.