Library Coq.Logic.ExtensionalityFacts
Some facts and definitions about extensionality
We investigate the relations between the following extensionality principles
Table of contents
1. Definitions
2. Functional extensionality <-> Equality of projections from diagonal
3. Functional extensionality <-> Unicity of inverse bijections
4. Functional extensionality <-> Bijectivity of bijective composition
- Functional extensionality
- Equality of projections from diagonal
- Unicity of inverse bijections
- Bijectivity of bijective composition
Set Implicit Arguments.
Definition is_inverse A B f g := (forall a:A, g (f a) = a) /\ (forall b:B, f (g b) = b).
The diagonal over A and the one-one correspondence with A
#[universes(template)]
Record Delta A := { pi1:A; pi2:A; eq:pi1=pi2 }.
Definition delta {A} (a:A) := {|pi1 := a; pi2 := a; eq := eq_refl a |}.
Lemma diagonal_projs_same_behavior : forall A (x:Delta A), pi1 x = pi2 x.
Lemma diagonal_inverse1 : forall A, is_inverse (A:=A) delta pi1.
Lemma diagonal_inverse2 : forall A, is_inverse (A:=A) delta pi2.
Functional extensionality
Equality of projections from diagonal
Unicity of bijection inverse
Bijectivity of bijective composition
Definition action A B C (f:A->B) := (fun h:B->C => fun x => h (f x)).
Theorem FunctExt_iff_EqDeltaProjs : FunctionalExtensionality <-> EqDeltaProjs.
Lemma FunctExt_UniqInverse : FunctionalExtensionality -> UniqueInverse.
Lemma UniqInverse_EqDeltaProjs : UniqueInverse -> EqDeltaProjs.
Theorem FunctExt_iff_UniqInverse : FunctionalExtensionality <-> UniqueInverse.
Lemma FunctExt_BijComp : FunctionalExtensionality -> BijectivityBijectiveComp.
Lemma BijComp_FunctExt : BijectivityBijectiveComp -> FunctionalExtensionality.