Library Coq.Numbers.HexadecimalZ


HexadecimalZ

Proofs that conversions between hexadecimal numbers and Z are bijections.

Require Import Hexadecimal HexadecimalFacts HexadecimalPos HexadecimalN ZArith.

Lemma of_to (z:Z) : Z.of_hex_int (Z.to_hex_int z) = z.

Lemma to_of (d:int) : Z.to_hex_int (Z.of_hex_int d) = norm d.

Some consequences

Lemma to_int_inj n n' : Z.to_hex_int n = Z.to_hex_int n' -> n = n'.

Lemma to_int_surj d : exists n, Z.to_hex_int n = norm d.

Lemma of_int_norm d : Z.of_hex_int (norm d) = Z.of_hex_int d.

Lemma of_inj d d' :
  Z.of_hex_int d = Z.of_hex_int d' -> norm d = norm d'.

Lemma of_iff d d' : Z.of_hex_int d = Z.of_hex_int d' <-> norm d = norm d'.

Various lemmas

Lemma of_hex_uint_iter_D0 d n :
  Z.of_hex_uint (app d (Nat.iter n D0 Nil))
  = Nat.iter n (Z.mul 0x10) (Z.of_hex_uint d).

Lemma of_hex_int_iter_D0 d n :
  Z.of_hex_int (app_int d (Nat.iter n D0 Nil))
  = Nat.iter n (Z.mul 0x10) (Z.of_hex_int d).

Definition double d :=
  match d with
  | Pos u => Pos (Unsigned.double u)
  | Neg u => Neg (Unsigned.double u)
  end.

Lemma double_norm d : double (norm d) = norm (double d).

Lemma of_hex_int_double d :
  Z.of_hex_int (double d) = Z.double (Z.of_hex_int d).

Lemma double_to_hex_int n :
  double (Z.to_hex_int n) = Z.to_hex_int (Z.double n).