Library Coq.Reals.Rlogic
This module proves some logical properties of the axiomatic of Reals.
- Decidability of arithmetical statements.
- Derivability of the Archimedean "axiom".
- Decidability of negated formulas.
Require Import RIneq.
Decidability of arithmetical statements
Section Arithmetical_dec.
Variable P : nat -> Prop.
Hypothesis HP : forall n, {P n} + {~P n}.
Lemma sig_forall_dec : {n | ~P n} + {forall n, P n}.
End Arithmetical_dec.
Derivability of the Archimedean axiom
Theorem not_not_archimedean :
forall r : R, ~ (forall n : nat, (INR n <= r)%R).
Lemma sig_not_dec : forall P : Prop, {not (not P)} + {not P}.