Library Coq.Reals.Rtrigo_facts
Require Import Rbase.
Require Import Rtrigo1.
Require Import Rfunctions.
Require Import Lra.
Require Import Ranalysis_reg.
Local Open Scope R_scope.
Lemma sin2_bound : forall x,
0 <= (sin x)² <= 1.
Lemma cos2_bound : forall x,
0 <= (cos x)² <= 1.
Lemma cos_sin : forall x, cos x >=0 ->
cos x = sqrt(1 - (sin x)²).
Lemma cos_sin_opp : forall x, cos x <=0 ->
cos x = - sqrt(1 - (sin x)²).
Lemma cos_sin_Rabs : forall x,
Rabs (cos x) = sqrt(1 - (sin x)²).
Lemma sin_cos : forall x, sin x >=0 ->
sin x = sqrt(1 - (cos x)²).
Lemma sin_cos_opp : forall x, sin x <=0 ->
sin x = - sqrt(1 - (cos x)²).
Lemma sin_cos_Rabs : forall x,
Rabs (sin x) = sqrt(1 - (cos x)²).
Lemma tan_sin : forall x, 0 <= cos x ->
tan x = sin x / sqrt (1 - (sin x)²).
Lemma tan_sin_opp : forall x, 0 > cos x ->
tan x = - (sin x / sqrt (1 - (sin x)²)).
Note: tan_sin_Rabs wouldn't make a lot of sense, because one would need Rabs on both sides
Lemma tan_cos : forall x, 0 <= sin x ->
tan x = sqrt (1 - (cos x)²) / cos x.
Lemma tan_cos_opp : forall x, 0 >= sin x ->
tan x = - sqrt (1 - (cos x)²) / cos x.
Lemma sin_tan : forall x, 0 < cos x ->
sin x = tan x / sqrt (1 + (tan x)²).
Lemma cos_tan : forall x, 0 < cos x ->
cos x = 1 / sqrt (1 + (tan x)²).
Lemma sin_pi_minus : forall x,
sin (PI - x) = sin x.
Lemma sin_pi_plus : forall x,
sin (PI + x) = - sin x.
Lemma cos_pi_minus : forall x,
cos (PI - x) = - cos x.
Lemma cos_pi_plus : forall x,
cos (PI + x) = - cos x.
Lemma tan_pi_minus : forall x, cos x <> 0 ->
tan (PI - x) = - tan x.
Lemma tan_pi_plus : forall x, cos x <> 0 ->
tan (PI + x) = tan x.