Library Coq.Strings.Ascii
Contributed by Laurent Théry (INRIA);
Adapted to Coq V8 by the Coq Development Team
Require Import Bool BinPos BinNat PeanoNat Nnat Coq.Strings.Byte.
Inductive ascii : Set := Ascii (_ _ _ _ _ _ _ _ : bool).
Delimit Scope char_scope with char.
Definition zero := Ascii false false false false false false false false.
Definition one := Ascii true false false false false false false false.
Definition shift (c : bool) (a : ascii) :=
match a with
| Ascii a1 a2 a3 a4 a5 a6 a7 a8 => Ascii c a1 a2 a3 a4 a5 a6 a7
end.
Definition of a decidable function that is effective
Definition ascii_dec : forall a b : ascii, {a = b} + {a <> b}.
Local Open Scope lazy_bool_scope.
Definition eqb (a b : ascii) : bool :=
match a, b with
| Ascii a0 a1 a2 a3 a4 a5 a6 a7,
Ascii b0 b1 b2 b3 b4 b5 b6 b7 =>
Bool.eqb a0 b0 &&& Bool.eqb a1 b1 &&& Bool.eqb a2 b2 &&& Bool.eqb a3 b3
&&& Bool.eqb a4 b4 &&& Bool.eqb a5 b5 &&& Bool.eqb a6 b6 &&& Bool.eqb a7 b7
end.
Infix "=?" := eqb : char_scope.
Lemma eqb_spec (a b : ascii) : reflect (a = b) (a =? b)%char.
Local Ltac t_eqb :=
repeat first [ congruence
| progress subst
| apply conj
| match goal with
| [ |- context[eqb ?x ?y] ] => destruct (eqb_spec x y)
end
| intro ].
Lemma eqb_refl x : (x =? x)%char = true.
Lemma eqb_sym x y : (x =? y)%char = (y =? x)%char.
Lemma eqb_eq n m : (n =? m)%char = true <-> n = m.
Lemma eqb_neq x y : (x =? y)%char = false <-> x <> y.
Lemma eqb_compat: Morphisms.Proper (Morphisms.respectful eq (Morphisms.respectful eq eq)) eqb.
Conversion between natural numbers modulo 256 and ascii characters
Definition ascii_of_pos : positive -> ascii :=
let loop := fix loop n p :=
match n with
| O => zero
| S n' =>
match p with
| xH => one
| xI p' => shift true (loop n' p')
| xO p' => shift false (loop n' p')
end
end
in loop 8.
Conversion from N to ascii
Definition ascii_of_N (n : N) :=
match n with
| N0 => zero
| Npos p => ascii_of_pos p
end.
Same for nat
Definition ascii_of_nat (a : nat) := ascii_of_N (N.of_nat a).
The opposite functions
Local Open Scope list_scope.
Fixpoint N_of_digits (l:list bool) : N :=
match l with
| nil => 0
| b :: l' => (if b then 1 else 0) + 2*(N_of_digits l')
end%N.
Definition N_of_ascii (a : ascii) : N :=
let (a0,a1,a2,a3,a4,a5,a6,a7) := a in
N_of_digits (a0::a1::a2::a3::a4::a5::a6::a7::nil).
Definition nat_of_ascii (a : ascii) : nat := N.to_nat (N_of_ascii a).
Proofs that we have indeed opposite function (below 256)
Theorem ascii_N_embedding :
forall a : ascii, ascii_of_N (N_of_ascii a) = a.
Theorem N_ascii_embedding :
forall n:N, (n < 256)%N -> N_of_ascii (ascii_of_N n) = n.
Theorem N_ascii_bounded :
forall a : ascii, (N_of_ascii a < 256)%N.
Theorem ascii_nat_embedding :
forall a : ascii, ascii_of_nat (nat_of_ascii a) = a.
Theorem nat_ascii_embedding :
forall n : nat, n < 256 -> nat_of_ascii (ascii_of_nat n) = n.
Theorem nat_ascii_bounded :
forall a : ascii, nat_of_ascii a < 256.
Concrete syntax
- "c" represents itself if c is a character of code < 128,
- """" is an exception: it represents the ascii character 34 (double quote),
- "nnn" represents the ascii character of decimal code nnn.
Definition ascii_of_byte (b : byte) : ascii
:= let '(b0, (b1, (b2, (b3, (b4, (b5, (b6, b7))))))) := Byte.to_bits b in
Ascii b0 b1 b2 b3 b4 b5 b6 b7.
Definition byte_of_ascii (a : ascii) : byte
:= let (b0, b1, b2, b3, b4, b5, b6, b7) := a in
Byte.of_bits (b0, (b1, (b2, (b3, (b4, (b5, (b6, b7))))))).
Lemma ascii_of_byte_of_ascii x : ascii_of_byte (byte_of_ascii x) = x.
Lemma byte_of_ascii_of_byte x : byte_of_ascii (ascii_of_byte x) = x.
Lemma ascii_of_byte_via_N x : ascii_of_byte x = ascii_of_N (Byte.to_N x).
Lemma ascii_of_byte_via_nat x : ascii_of_byte x = ascii_of_nat (Byte.to_nat x).
Lemma byte_of_ascii_via_N x : Some (byte_of_ascii x) = Byte.of_N (N_of_ascii x).
Lemma byte_of_ascii_via_nat x : Some (byte_of_ascii x) = Byte.of_nat (nat_of_ascii x).
Module Export AsciiSyntax.
End AsciiSyntax.
Local Open Scope char_scope.
Example Space := " ".
Example DoubleQuote := """".
Example Beep := "007".