Module Term
Derived constructors
val mkArrow : Constr.types -> Sorts.relevance -> Constr.types -> Constr.constr
non-dependent product
t1 -> t2
, an alias forforall (_:t1), t2
. Bewaret_2
is NOT lifted. Eg: in contextA:Prop
,A->A
is built by(mkArrow (mkRel 1) (mkRel 2))
val mkArrowR : Constr.types -> Constr.types -> Constr.constr
For an always-relevant domain
val mkNamedLambda : Names.Id.t Context.binder_annot -> Constr.types -> Constr.constr -> Constr.constr
Named version of the functions from
Term
.
val mkNamedLetIn : Names.Id.t Context.binder_annot -> Constr.constr -> Constr.types -> Constr.constr -> Constr.constr
val mkNamedProd : Names.Id.t Context.binder_annot -> Constr.types -> Constr.types -> Constr.types
val mkProd_or_LetIn : Constr.rel_declaration -> Constr.types -> Constr.types
Constructs either
(x:t)c
or[x=b:t]c
val mkProd_wo_LetIn : Constr.rel_declaration -> Constr.types -> Constr.types
val mkNamedProd_or_LetIn : Constr.named_declaration -> Constr.types -> Constr.types
val mkNamedProd_wo_LetIn : Constr.named_declaration -> Constr.types -> Constr.types
val mkLambda_or_LetIn : Constr.rel_declaration -> Constr.constr -> Constr.constr
Constructs either
[x:t]c
or[x=b:t]c
val mkNamedLambda_or_LetIn : Constr.named_declaration -> Constr.constr -> Constr.constr
Other term constructors.
val applist : (Constr.constr * Constr.constr list) -> Constr.constr
val applistc : Constr.constr -> Constr.constr list -> Constr.constr
val appvect : (Constr.constr * Constr.constr array) -> Constr.constr
val appvectc : Constr.constr -> Constr.constr array -> Constr.constr
val prodn : int -> (Names.Name.t Context.binder_annot * Constr.constr) list -> Constr.constr -> Constr.constr
prodn n l b
=forall (x_1:T_1)...(x_n:T_n), b
wherel
is(x_n,T_n)...(x_1,T_1)...
.
val compose_prod : (Names.Name.t Context.binder_annot * Constr.constr) list -> Constr.constr -> Constr.constr
compose_prod l b
- returns
forall (x_1:T_1)...(x_n:T_n), b
wherel
is(x_n,T_n)...(x_1,T_1)
. Inverse ofdecompose_prod
.
val lamn : int -> (Names.Name.t Context.binder_annot * Constr.constr) list -> Constr.constr -> Constr.constr
lamn n l b
- returns
fun (x_1:T_1)...(x_n:T_n) => b
wherel
is(x_n,T_n)...(x_1,T_1)...
.
val compose_lam : (Names.Name.t Context.binder_annot * Constr.constr) list -> Constr.constr -> Constr.constr
compose_lam l b
- returns
fun (x_1:T_1)...(x_n:T_n) => b
wherel
is(x_n,T_n)...(x_1,T_1)
. Inverse ofit_destLam
val to_lambda : int -> Constr.constr -> Constr.constr
to_lambda n l
- returns
fun (x_1:T_1)...(x_n:T_n) => T
wherel
isforall (x_1:T_1)...(x_n:T_n), T
val to_prod : int -> Constr.constr -> Constr.constr
to_prod n l
- returns
forall (x_1:T_1)...(x_n:T_n), T
wherel
isfun (x_1:T_1)...(x_n:T_n) => T
val it_mkLambda_or_LetIn : Constr.constr -> Constr.rel_context -> Constr.constr
val it_mkProd_wo_LetIn : Constr.types -> Constr.rel_context -> Constr.types
val it_mkProd_or_LetIn : Constr.types -> Constr.rel_context -> Constr.types
val lambda_applist : Constr.constr -> Constr.constr list -> Constr.constr
In
lambda_applist c args
,c
is supposed to have the formλΓ.c
withΓ
without let-in; it returnsc
with the variables ofΓ
instantiated byargs
.
val lambda_appvect : Constr.constr -> Constr.constr array -> Constr.constr
val lambda_applist_assum : int -> Constr.constr -> Constr.constr list -> Constr.constr
In
lambda_applist_assum n c args
,c
is supposed to have the formλΓ.c
withΓ
of lengthn
and possibly with let-ins; it returnsc
with the assumptions ofΓ
instantiated byargs
and the local definitions ofΓ
expanded.
val lambda_appvect_assum : int -> Constr.constr -> Constr.constr array -> Constr.constr
val prod_appvect : Constr.types -> Constr.constr array -> Constr.types
prod_appvect
forall (x1:B1;...;xn:Bn), B
a1...an
- returns
B[a1...an]
val prod_applist : Constr.types -> Constr.constr list -> Constr.types
val prod_appvect_assum : int -> Constr.types -> Constr.constr array -> Constr.types
In
prod_appvect_assum n c args
,c
is supposed to have the form∀Γ.c
withΓ
of lengthn
and possibly with let-ins; it returnsc
with the assumptions ofΓ
instantiated byargs
and the local definitions ofΓ
expanded.
val prod_applist_assum : int -> Constr.types -> Constr.constr list -> Constr.types
Other term destructors.
val decompose_prod : Constr.constr -> (Names.Name.t Context.binder_annot * Constr.constr) list * Constr.constr
Transforms a product term
$
(x_1:T_1)..(x_n:T_n)T$
into the pair$
((x_n,T_n);...;(x_1,T_1)
,T)$
, where$
T$
is not a product.
val decompose_lam : Constr.constr -> (Names.Name.t Context.binder_annot * Constr.constr) list * Constr.constr
Transforms a lambda term
$
x_1:T_1
..x_n:T_n
T$
into the pair$
((x_n,T_n);...;(x_1,T_1)
,T)$
, where$
T$
is not a lambda.
val decompose_prod_n : int -> Constr.constr -> (Names.Name.t Context.binder_annot * Constr.constr) list * Constr.constr
Given a positive integer n, decompose a product term
$
(x_1:T_1)..(x_n:T_n)T$
into the pair$
((xn,Tn);...;(x1,T1)
,T)$
. Raise a user error if not enough products.
val decompose_lam_n : int -> Constr.constr -> (Names.Name.t Context.binder_annot * Constr.constr) list * Constr.constr
Given a positive integer
$
n$
, decompose a lambda term$
x_1:T_1
..x_n:T_n
T$
into the pair$
((x_n,T_n);...;(x_1,T_1)
,T)$
. Raise a user error if not enough lambdas.
val decompose_prod_assum : Constr.types -> Constr.rel_context * Constr.types
Extract the premisses and the conclusion of a term of the form "(xi:Ti) ... (xj:=cj:Tj) ..., T" where T is not a product nor a let
val decompose_lam_assum : Constr.constr -> Constr.rel_context * Constr.constr
Idem with lambda's and let's
val decompose_prod_n_assum : int -> Constr.types -> Constr.rel_context * Constr.types
Idem but extract the first
n
premisses, counting let-ins.
val decompose_lam_n_assum : int -> Constr.constr -> Constr.rel_context * Constr.constr
Idem for lambdas, _not_ counting let-ins
val decompose_lam_n_decls : int -> Constr.constr -> Constr.rel_context * Constr.constr
Idem, counting let-ins
val prod_assum : Constr.types -> Constr.rel_context
Return the premisses/parameters of a type/term (let-in included)
val lam_assum : Constr.constr -> Constr.rel_context
val prod_n_assum : int -> Constr.types -> Constr.rel_context
Return the first n-th premisses/parameters of a type (let included and counted)
val lam_n_assum : int -> Constr.constr -> Constr.rel_context
Return the first n-th premisses/parameters of a term (let included but not counted)
val strip_prod : Constr.types -> Constr.types
Remove the premisses/parameters of a type/term
val strip_lam : Constr.constr -> Constr.constr
val strip_prod_n : int -> Constr.types -> Constr.types
Remove the first n-th premisses/parameters of a type/term
val strip_lam_n : int -> Constr.constr -> Constr.constr
val strip_prod_assum : Constr.types -> Constr.types
Remove the premisses/parameters of a type/term (including let-in)
val strip_lam_assum : Constr.constr -> Constr.constr
...
type arity
= Constr.rel_context * Sorts.t
val mkArity : arity -> Constr.types
Build an "arity" from its canonical form
val destArity : Constr.types -> arity
Destruct an "arity" into its canonical form
val isArity : Constr.types -> bool
Tell if a term has the form of an arity
type sorts_family
= Sorts.family
=
|
InSProp
|
InProp
|
InSet
|
InType
type sorts
= private Sorts.t
=
|
SProp
|
Prop
|
Set
|
Type of Univ.Universe.t
Type