Module UnivSubst
type 'a universe_map
= 'a Univ.Level.Map.t
type universe_subst
= Univ.Universe.t universe_map
type universe_subst_fn
= Univ.Level.t -> Univ.Universe.t option
type universe_level_subst_fn
= Univ.Level.t -> Univ.Level.t
type quality_subst
= Sorts.Quality.t Sorts.QVar.Map.t
type quality_subst_fn
= Sorts.QVar.t -> Sorts.Quality.t
val level_subst_of : universe_subst_fn -> universe_level_subst_fn
The resulting function must never be called on a level which would produce an algebraic.
val subst_univs_constraints : universe_subst_fn -> Univ.Constraints.t -> Univ.Constraints.t
val nf_binder_annot : (Sorts.relevance -> Sorts.relevance) -> 'a Context.binder_annot -> 'a Context.binder_annot
val nf_evars_and_universes_opt_subst : (Constr.existential -> Constr.constr option) -> quality_subst_fn -> universe_subst_fn -> Constr.constr -> Constr.constr
val subst_univs_universe : universe_subst_fn -> Univ.Universe.t -> Univ.Universe.t
val pr_universe_subst : (Univ.Level.t -> Pp.t) -> universe_subst -> Pp.t
val enforce_eq : Univ.Universe.t Univ.constraint_function
val enforce_leq : Univ.Universe.t Univ.constraint_function
val enforce_eq_sort : Sorts.t -> Sorts.t -> Univ.Constraints.t -> Univ.Constraints.t
val enforce_leq_sort : Sorts.t -> Sorts.t -> Univ.Constraints.t -> Univ.Constraints.t
val enforce_leq_alg_sort : Sorts.t -> Sorts.t -> UGraph.t -> Univ.Constraints.t * UGraph.t
Picks an arbitrary set of constraints sufficient to ensure
u <= v
.