Coq  is a proof assistant for higher-order logic, allowing the development of computer programs consistent with their formal specification. It is the result of about ten years of research of the Coq project. We shall briefly survey here three main aspects: the logical language in which we write our axiomatizations and specifications, the proof assistant which allows the development of verified mathematical proofs, and the program extractor which synthesizes computer programs obeying their formal specifications, written as logical assertions in the language.

The logical language used by Coq is a variety of type theory, called the Calculus of Inductive Constructions. Without going back to Leibniz and Boole, we can date the creation of what is now called mathematical logic to the work of Frege and Peano at the turn of the century. The discovery of antinomies in the free use of predicates or comprehension principles prompted Russell to restrict predicate calculus with a stratification of types. This effort culminated with Principia Mathematica, the first systematic attempt at a formal foundation of mathematics. A simplification of this system along the lines of simply typed λ-calculus occurred with Church’s Simple Theory of Types. The λ-calculus notation, originally used for expressing functionality, could also be used as an encoding of natural deduction proofs. This Curry-Howard isomorphism was used by N. de Bruijn in the Automath project, the first full-scale attempt to develop and mechanically verify mathematical proofs. This effort culminated with Jutting’s verification of Landau’s Grundlagen in the 1970’s. Exploiting this Curry-Howard isomorphism, notable achievements in proof theory saw the emergence of two type-theoretic frameworks; the first one, Martin-Löf’s Intuitionistic Theory of Types, attempts a new foundation of mathematics on constructive principles. The second one, Girard’s polymorphic λ-calculus Fω, is a very strong functional system in which we may represent higher-order logic proof structures. Combining both systems in a higher-order extension of the Automath languages, T. Coquand presented in 1985 the first version of the Calculus of Constructions, CoC. This strong logical system allowed powerful axiomatizations, but direct inductive definitions were not possible, and inductive notions had to be defined indirectly through functional encodings, which introduced inefficiencies and awkwardness. The formalism was extended in 1989 by T. Coquand and C. Paulin with primitive inductive definitions, leading to the current Calculus of Inductive Constructions. This extended formalism is not rigorously defined here. Rather, numerous concrete examples are discussed. We refer the interested reader to relevant research papers for more information about the formalism, its meta-theoretic properties, and semantics. However, it should not be necessary to understand this theoretical material in order to write specifications. It is possible to understand the Calculus of Inductive Constructions at a higher level, as a mixture of predicate calculus, inductive predicate definitions presented as typed PROLOG, and recursive function definitions close to the language ML.

Automated theorem-proving was pioneered in the 1960’s by Davis and Putnam in propositional calculus. A complete mechanization (in the sense of a semi-decision procedure) of classical first-order logic was proposed in 1965 by J.A. Robinson, with a single uniform inference rule called resolution. Resolution relies on solving equations in free algebras (i.e. term structures), using the unification algorithm. Many refinements of resolution were studied in the 1970’s, but few convincing implementations were realized, except of course that PROLOG is in some sense issued from this effort. A less ambitious approach to proof development is computer-aided proof-checking. The most notable proof-checkers developed in the 1970’s were LCF, designed by R. Milner and his colleagues at U. Edinburgh, specialized in proving properties about denotational semantics recursion equations, and the Boyer and Moore theorem-prover, an automation of primitive recursion over inductive data types. While the Boyer-Moore theorem-prover attempted to synthesize proofs by a combination of automated methods, LCF constructed its proofs through the programming of tactics, written in a high-level functional meta-language, ML.

The salient feature which clearly distinguishes our proof assistant from say LCF or Boyer and Moore’s, is its possibility to extract programs from the constructive contents of proofs. This computational interpretation of proof objects, in the tradition of Bishop’s constructive mathematics, is based on a realizability interpretation, in the sense of Kleene, due to C. Paulin. The user must just mark his intention by separating in the logical statements the assertions stating the existence of a computational object from the logical assertions which specify its properties, but which may be considered as just comments in the corresponding program. Given this information, the system automatically extracts a functional term from a consistency proof of its specifications. This functional term may be in turn compiled into an actual computer program. This methodology of extracting programs from proofs is a revolutionary paradigm for software engineering. Program synthesis has long been a theme of research in artificial intelligence, pioneered by R. Waldinger. The Tablog system of Z. Manna and R. Waldinger allows the deductive synthesis of functional programs from proofs in tableau form of their specifications, written in a variety of first-order logic. Development of a systematic programming logic, based on extensions of Martin-Löf’s type theory, was undertaken at Cornell U. by the Nuprl team, headed by R. Constable. The first actual program extractor, PX, was designed and implemented around 1985 by S. Hayashi from Kyoto University. It allows the extraction of a LISP program from a proof in a logical system inspired by the logical formalisms of S. Feferman. Interest in this methodology is growing in the theoretical computer science community. We can foresee the day when actual computer systems used in applications will contain certified modules, automatically generated from a consistency proof of their formal specifications. We are however still far from being able to use this methodology in a smooth interaction with the standard tools from software engineering, i.e. compilers, linkers, run-time systems taking advantage of special hardware, debuggers, and the like. We hope that Coq can be of use to researchers interested in experimenting with this new methodology.

A first implementation of CoC was started in 1984 by G. Huet and T. Coquand. Its implementation language was CAML, a functional programming language from the ML family designed at INRIA in Rocquencourt. The core of this system was a proof-checker for CoC seen as a typed λ-calculus, called the Constructive Engine. This engine was operated through a high-level notation permitting the declaration of axioms and parameters, the definition of mathematical types and objects, and the explicit construction of proof objects encoded as λ-terms. A section mechanism, designed and implemented by G. Dowek, allowed hierarchical developments of mathematical theories. This high-level language was called the Mathematical Vernacular. Furthermore, an interactive Theorem Prover permitted the incremental construction of proof trees in a top-down manner, subgoaling recursively and backtracking from dead-alleys. The theorem prover executed tactics written in CAML, in the LCF fashion. A basic set of tactics was predefined, which the user could extend by his own specific tactics. This system (Version 4.10) was released in 1989. Then, the system was extended to deal with the new calculus with inductive types by C. Paulin, with corresponding new tactics for proofs by induction. A new standard set of tactics was streamlined, and the vernacular extended for tactics execution. A package to compile programs extracted from proofs to actual computer programs in CAML or some other functional language was designed and implemented by B. Werner. A new user-interface, relying on a CAML-X interface by D. de Rauglaudre, was designed and implemented by A. Felty. It allowed operation of the theorem-prover through the manipulation of windows, menus, mouse-sensitive buttons, and other widgets. This system (Version 5.6) was released in 1991.

Coq was ported to the new implementation Caml-light of X. Leroy and D. Doligez by D. de Rauglaudre (Version 5.7) in 1992. A new version of Coq was then coordinated by C. Murthy, with new tools designed by C. Parent to prove properties of ML programs (this methodology is dual to program extraction) and a new user-interaction loop. This system (Version 5.8) was released in May 1993. A Centaur interface CTCoq was then developed by Y. Bertot from the Croap project from INRIA-Sophia-Antipolis.

In parallel, G. Dowek and H. Herbelin developed a new proof engine, allowing the general manipulation of existential variables consistently with dependent types in an experimental version of Coq (V5.9).

The version V5.10 of Coq is based on a generic system for manipulating terms with binding operators due to Chet Murthy. A new proof engine allows the parallel development of partial proofs for independent subgoals. The structure of these proof trees is a mixed representation of derivation trees for the Calculus of Inductive Constructions with abstract syntax trees for the tactics scripts, allowing the navigation in a proof at various levels of details. The proof engine allows generic environment items managed in an object-oriented way. This new architecture, due to C. Murthy, supports several new facilities which make the system easier to extend and to scale up:

In the Fall of 1994, C. Paulin-Mohring replaced the structure of inductively defined types and families by a new structure, allowing the mutually recursive definitions. P. Manoury implemented a translation of recursive definitions into the primitive recursive style imposed by the internal recursion operators, in the style of the ProPre system. C. Muñoz implemented a decision procedure for intuitionistic propositional logic, based on results of R. Dyckhoff. J.C. Filliâtre implemented a decision procedure for first-order logic without contraction, based on results of J. Ketonen and R. Weyhrauch. Finally C. Murthy implemented a library of inversion tactics, relieving the user from tedious definitions of “inversion predicates”.

Rocquencourt, Feb. 1st 1995
Gérard Huet

Credits: addendum for version 6.1

The present version 6.1 of Coq is based on the V5.10 architecture. It was ported to the new language Objective Caml by Bruno Barras. The underlying framework has slightly changed and allows more conversions between sorts.

The new version provides powerful tools for easier developments.

Cristina Cornes designed an extension of the Coq syntax to allow definition of terms using a powerful pattern-matching analysis in the style of ML programs.

Amokrane Saïbi wrote a mechanism to simulate inheritance between types families extending a proposal by Peter Aczel. He also developed a mechanism to automatically compute which arguments of a constant may be inferred by the system and consequently do not need to be explicitly written.

Yann Coscoy designed a command which explains a proof term using natural language. Pierre Crégut built a new tactic which solves problems in quantifier-free Presburger Arithmetic. Both functionalities have been integrated to the Coq system by Hugo Herbelin.

Samuel Boutin designed a tactic for simplification of commutative rings using a canonical set of rewriting rules and equality modulo associativity and commutativity.

Finally the organisation of the Coq distribution has been supervised by Jean-Christophe Filliâtre with the help of Judicaël Courant and Bruno Barras.

Lyon, Nov. 18th 1996
Christine Paulin

Credits: addendum for version 6.2

In version 6.2 of Coq, the parsing is done using camlp4, a preprocessor and pretty-printer for CAML designed by Daniel de Rauglaudre at INRIA. Daniel de Rauglaudre made the first adaptation of Coq for camlp4, this work was continued by Bruno Barras who also changed the structure of Coq abstract syntax trees and the primitives to manipulate them. The result of these changes is a faster parsing procedure with greatly improved syntax-error messages. The user-interface to introduce grammar or pretty-printing rules has also changed.

Eduardo Giménez redesigned the internal tactic libraries, giving uniform names to Caml functions corresponding to Coq tactic names.

Bruno Barras wrote new more efficient reductions functions.

Hugo Herbelin introduced more uniform notations in the Coq specification language: the definitions by fixpoints and pattern-matching have a more readable syntax. Patrick Loiseleur introduced user-friendly notations for arithmetic expressions.

New tactics were introduced: Eduardo Giménez improved a mechanism to introduce macros for tactics, and designed special tactics for (co)inductive definitions; Patrick Loiseleur designed a tactic to simplify polynomial expressions in an arbitrary commutative ring which generalizes the previous tactic implemented by Samuel Boutin. Jean-Christophe Filliâtre introduced a tactic for refining a goal, using a proof term with holes as a proof scheme.

David Delahaye designed the SearchIsos tool to search an object in the library given its type (up to isomorphism).

Henri Laulhère produced the Coq distribution for the Windows environment.

Finally, Hugo Herbelin was the main coordinator of the Coq documentation with principal contributions by Bruno Barras, David Delahaye, Jean-Christophe Filliâtre, Eduardo Giménez, Hugo Herbelin and Patrick Loiseleur.

Orsay, May 4th 1998
Christine Paulin

Credits: addendum for version 6.3

The main changes in version V6.3 was the introduction of a few new tactics and the extension of the guard condition for fixpoint definitions.

B. Barras extended the unification algorithm to complete partial terms and solved various tricky bugs related to universes.
D. Delahaye developed the AutoRewrite tactic. He also designed the new behavior of Intro and provided the tacticals First and Solve.
J.-C. Filliâtre developed the Correctness tactic.
E. Giménez extended the guard condition in fixpoints.
H. Herbelin designed the new syntax for definitions and extended the Induction tactic.
P. Loiseleur developed the Quote tactic and the new design of the Auto tactic, he also introduced the index of errors in the documentation.
C. Paulin wrote the Focus command and introduced the reduction functions in definitions, this last feature was proposed by J.-F. Monin from CNET Lannion.

Orsay, Dec. 1999
Christine Paulin

Credits: versions 7

The version V7 is a new implementation started in September 1999 by Jean-Christophe Filliâtre. This is a major revision with respect to the internal architecture of the system. The Coq version 7.0 was distributed in March 2001, version 7.1 in September 2001, version 7.2 in January 2002, version 7.3 in May 2002 and version 7.4 in February 2003.

Jean-Christophe Filliâtre designed the architecture of the new system, he introduced a new representation for environments and wrote a new kernel for type-checking terms. His approach was to use functional data-structures in order to get more sharing, to prepare the addition of modules and also to get closer to a certified kernel.

Hugo Herbelin introduced a new structure of terms with local definitions. He introduced “qualified” names, wrote a new pattern-matching compilation algorithm and designed a more compact algorithm for checking the logical consistency of universes. He contributed to the simplification of Coq internal structures and the optimisation of the system. He added basic tactics for forward reasoning and coercions in patterns.

David Delahaye introduced a new language for tactics. General tactics using pattern-matching on goals and context can directly be written from the Coq toplevel. He also provided primitives for the design of user-defined tactics in Caml.

Micaela Mayero contributed the library on real numbers. Olivier Desmettre extended this library with axiomatic trigonometric functions, square, square roots, finite sums, Chasles property and basic plane geometry.

Jean-Christophe Filliâtre and Pierre Letouzey redesigned a new extraction procedure from Coq terms to Caml or Haskell programs. This new extraction procedure, unlike the one implemented in previous version of Coq is able to handle all terms in the Calculus of Inductive Constructions, even involving universes and strong elimination. P. Letouzey adapted user contributions to extract ML programs when it was sensible. Jean-Christophe Filliâtre wrote coqdoc, a documentation tool for Coq libraries usable from version 7.2.

Bruno Barras improved the reduction algorithms efficiency and the confidence level in the correctness of Coq critical type-checking algorithm.

Yves Bertot designed the SearchPattern and SearchRewrite tools and the support for the pcoq interface (

Micaela Mayero and David Delahaye introduced Field, a decision tactic for commutative fields.

Christine Paulin changed the elimination rules for empty and singleton propositional inductive types.

Loïc Pottier developed Fourier, a tactic solving linear inequalities on real numbers.

Pierre Crégut developed a new version based on reflexion of the Omega decision tactic.

Claudio Sacerdoti Coen designed an XML output for the Coq modules to be used in the Hypertextual Electronic Library of Mathematics (HELM cf

A library for efficient representation of finite maps using binary trees contributed by Jean Goubault was integrated in the basic theories.

Pierre Courtieu developed a command and a tactic to reason on the inductive structure of recursively defined functions.

Jacek Chrzaszcz designed and implemented the module system of Coq whose foundations are in Judicaël Courant’s PhD thesis.

The development was coordinated by C. Paulin.

Many discussions within the Démons team and the LogiCal project influenced significantly the design of Coq especially with J. Courant, J. Duprat, J. Goubault, A. Miquel, C. Marché, B. Monate and B. Werner.

Intensive users suggested improvements of the system : Y. Bertot, L. Pottier, L. Théry, P. Zimmerman from INRIA, C. Alvarado, P. Crégut, J.-F. Monin from France Telecom R & D.

Orsay, May. 2002
Hugo Herbelin & Christine Paulin

Credits: version 8.0

Coq version 8 is a major revision of the Coq proof assistant. First, the underlying logic is slightly different. The so-called impredicativity of the sort Set has been dropped. The main reason is that it is inconsistent with the principle of description which is quite a useful principle for formalizing mathematics within classical logic. Moreover, even in an constructive setting, the impredicativity of Set does not add so much in practice and is even subject of criticism from a large part of the intuitionistic mathematician community. Nevertheless, the impredicativity of Set remains optional for users interested in investigating mathematical developments which rely on it.

Secondly, the concrete syntax of terms has been completely revised. The main motivations were

Together with the revision of the concrete syntax, a new mechanism of interpretation scopes permits to reuse the same symbols (typically +, -, *, /, <, <=) in various mathematical theories without any ambiguities for Coq, leading to a largely improved readability of Coq scripts. New commands to easily add new symbols are also provided.

Coming with the new syntax of terms, a slight reform of the tactic language and of the language of commands has been carried out. The purpose here is a better uniformity making the tactics and commands easier to use and to remember.

Thirdly, a restructuration and uniformisation of the standard library of Coq has been performed. There is now just one Leibniz’ equality usable for all the different kinds of Coq objects. Also, the set of real numbers now lies at the same level as the sets of natural and integer numbers. Finally, the names of the standard properties of numbers now follow a standard pattern and the symbolic notations for the standard definitions as well.

The fourth point is the release of CoqIDE, a new graphical gtk2-based interface fully integrated to Coq. Close in style from the Proof General Emacs interface, it is faster and its integration with Coq makes interactive developments more friendly. All mathematical Unicode symbols are usable within CoqIDE.

Finally, the module system of Coq completes the picture of Coq version 8.0. Though released with an experimental status in the previous version 7.4, it should be considered as a salient feature of the new version.

Besides, Coq comes with its load of novelties and improvements: new or improved tactics (including a new tactic for solving first-order statements), new management commands, extended libraries.

Bruno Barras and Hugo Herbelin have been the main contributors of the reflexion and the implementation of the new syntax. The smart automatic translator from old to new syntax released with Coq is also their work with contributions by Olivier Desmettre.

Hugo Herbelin is the main designer and implementor of the notion of interpretation scopes and of the commands for easily adding new notations.

Hugo Herbelin is the main implementor of the restructuration of the standard library.

Pierre Corbineau is the main designer and implementor of the new tactic for solving first-order statements in presence of inductive types. He is also the maintainer of the non-domain specific automation tactics.

Benjamin Monate is the developer of the CoqIDE graphical interface with contributions by Jean-Christophe Filliâtre, Pierre Letouzey, Claude Marché and Bruno Barras.

Claude Marché coordinated the edition of the Reference Manual for Coq V8.0.

Pierre Letouzey and Jacek Chrzaszcz respectively maintained the extraction tool and module system of Coq.

Jean-Christophe Filliâtre, Pierre Letouzey, Hugo Herbelin and contributors from Sophia-Antipolis and Nijmegen participated to the extension of the library.

Julien Narboux built a NSIS-based automatic Coq installation tool for the Windows platform.

Hugo Herbelin and Christine Paulin coordinated the development which was under the responsability of Christine Paulin.

Palaiseau & Orsay, Apr. 2004
Hugo Herbelin & Christine Paulin
(updated Apr. 2006)

Credits: version 8.1

Coq version 8.1 adds various new functionalities.

Benjamin Grégoire implemented an alternative algorithm to check the convertibility of terms in the Coq type-checker. This alternative algorithm works by compilation to an efficient bytecode that is interpreted in an abstract machine similar to Xavier Leroy’s ZINC machine. Convertibility is performed by comparing the normal forms. This alternative algorithm is specifically interesting for proofs by reflection. More generally, it is convenient in case of intensive computations.

Christine Paulin implemented an extension of inductive types allowing recursively non uniform parameters. Hugo Herbelin implemented sort-polymorphism for inductive types.

Claudio Sacerdoti Coen improved the tactics for rewriting on arbitrary compatible equivalence relations. He also generalized rewriting to arbitrary transition systems.

Claudio Sacerdoti Coen added new features to the module system.

Benjamin Grégoire, Assia Mahboubi and Bruno Barras developed a new more efficient and more general simplification algorithm on rings and semi-rings.

Laurent Théry and Bruno Barras developed a new significantly more efficient simplification algorithm on fields.

Hugo Herbelin, Pierre Letouzey, Julien Forest, Julien Narboux and Claudio Sacerdoti Coen added new tactic features.

Hugo Herbelin implemented matching on disjunctive patterns.

New mechanisms made easier the communication between Coq and external provers. Nicolas Ayache and Jean-Christophe Filliâtre implemented connections with the provers cvcl, Simplify and zenon. Hugo Herbelin implemented an experimental protocol for calling external tools from the tactic language.

Matthieu Sozeau developed Russell, an experimental language to specify the behavior of programs with subtypes.

A mechanism to automatically use some specific tactic to solve unresolved implicit has been implemented by Hugo Herbelin.

Laurent Théry’s contribution on strings and Pierre Letouzey and Jean-Christophe Filliâtre’s contribution on finite maps have been integrated to the Coq standard library. Pierre Letouzey developed a library about finite sets “à la Objective Caml”. With Jean-Marc Notin, he extended the library on lists. Pierre Letouzey’s contribution on rational numbers has been integrated and extended..

Pierre Corbineau extended his tactic for solving first-order statements. He wrote a reflection-based intuitionistic tautology solver.

Pierre Courtieu, Julien Forest and Yves Bertot added extra support to reason on the inductive structure of recursively defined functions.

Jean-Marc Notin significantly contributed to the general maintenance of the system. He also took care of coqdoc.

Pierre Castéran contributed to the documentation of (co-)inductive types and suggested improvements to the libraries.

Pierre Corbineau implemented a declarative mathematical proof language, usable in combination with the tactic-based style of proof.

Finally, many users suggested improvements of the system through the Coq-Club mailing list and bug-tracker systems, especially user groups from INRIA Rocquencourt, Radbout University, University of Pennsylvania and Yale University.

Palaiseau, July 2006
Hugo Herbelin

Credits: version 8.2

Coq version 8.2 adds new features, new libraries and improves on many various aspects.

Regarding the language of Coq, the main novelty is the introduction by Matthieu Sozeau of a package of commands providing Haskell-style type classes. Type classes, that come with a few convenient features such as type-based resolution of implicit arguments, plays a new role of landmark in the architecture of Coq with respect to automatization. For instance, thanks to type classes support, Matthieu Sozeau could implement a new resolution-based version of the tactics dedicated to rewriting on arbitrary transitive relations.

Another major improvement of Coq 8.2 is the evolution of the arithmetic libraries and of the tools associated to them. Benjamin Grégoire and Laurent Théry contributed a modular library for building arbitrarily large integers from bounded integers while Evgeny Makarov contributed a modular library of abstract natural and integer arithmetics together with a few convenient tactics. On his side, Pierre Letouzey made numerous extensions to the arithmetic libraries on ℤ and ℚ, including extra support for automatization in presence of various number-theory concepts.

Frédéric Besson contributed a reflexive tactic based on Krivine-Stengle Positivstellensatz (the easy way) for validating provability of systems of inequalities. The platform is flexible enough to support the validation of any algorithm able to produce a “certificate” for the Positivstellensatz and this covers the case of Fourier-Motzkin (for linear systems in ℚ and ℝ), Fourier-Motzkin with cutting planes (for linear systems in ℤ) and sum-of-squares (for non-linear systems). Evgeny Makarov made the platform generic over arbitrary ordered rings.

Arnaud Spiwack developed a library of 31-bits machine integers and, relying on Benjamin Grégoire and Laurent Théry’s library, delivered a library of unbounded integers in base 231. As importantly, he developed a notion of “retro-knowledge” so as to safely extend the kernel-located bytecode-based efficient evaluation algorithm of Coq version 8.1 to use 31-bits machine arithmetics for efficiently computing with the library of integers he developed.

Beside the libraries, various improvements contributed to provide a more comfortable end-user language and more expressive tactic language. Hugo Herbelin and Matthieu Sozeau improved the pattern-matching compilation algorithm (detection of impossible clauses in pattern-matching, automatic inference of the return type). Hugo Herbelin, Pierre Letouzey and Matthieu Sozeau contributed various new convenient syntactic constructs and new tactics or tactic features: more inference of redundant information, better unification, better support for proof or definition by fixpoint, more expressive rewriting tactics, better support for meta-variables, more convenient notations, ...

Élie Soubiran improved the module system, adding new features (such as an “include” command) and making it more flexible and more general. He and Pierre Letouzey improved the support for modules in the extraction mechanism.

Matthieu Sozeau extended the Russell language, ending in an convenient way to write programs of given specifications, Pierre Corbineau extended the Mathematical Proof Language and the automatization tools that accompany it, Pierre Letouzey supervised and extended various parts the standard library, Stéphane Glondu contributed a few tactics and improvements, Jean-Marc Notin provided help in debugging, general maintenance and coqdoc support, Vincent Siles contributed extensions of the Scheme command and of injection.

Bruno Barras implemented the coqchk tool: this is a stand-alone type-checker that can be used to certify .vo files. Especially, as this verifier runs in a separate process, it is granted not to be “hijacked” by virtually malicious extensions added to Coq.

Yves Bertot, Jean-Christophe Filliâtre, Pierre Courtieu and Julien Forest acted as maintainers of features they implemented in previous versions of Coq.

Julien Narboux contributed to CoqIDE. Nicolas Tabareau made the adaptation of the interface of the old “setoid rewrite” tactic to the new version. Lionel Mamane worked on the interaction between Coq and its external interfaces. With Samuel Mimram, he also helped making Coq compatible with recent software tools. Russell O’Connor, Cezary Kaliscyk, Milad Niqui contributed to improved the libraries of integers, rational, and real numbers. We also thank many users and partners for suggestions and feedback, in particular Pierre Castéran and Arthur Charguéraud, the INRIA Marelle team, Georges Gonthier and the INRIA-Microsoft Mathematical Components team, the Foundations group at Radbout university in Nijmegen, reporters of bugs and participants to the Coq-Club mailing list.

Palaiseau, June 2008
Hugo Herbelin

Credits: version 8.3

Coq version 8.3 is before all a transition version with refinements or extensions of the existing features and libraries and a new tactic nsatz based on Hilbert’s Nullstellensatz for deciding systems of equations over rings.

With respect to libraries, the main evolutions are due to Pierre Letouzey with a rewriting of the library of finite sets FSets and a new round of evolutions in the modular development of arithmetic (library Numbers). The reason for making FSets evolve is that the computational and logical contents were quite intertwined in the original implementation, leading in some cases to longer computations than expected and this problem is solved in the new MSets implementation. As for the modular arithmetic library, it was only dealing with the basic arithmetic operators in the former version and its current extension adds the standard theory of the division, min and max functions, all made available for free to any implementation of ℕ, ℤ or ℤ/nℤ.

The main other evolutions of the library are due to Hugo Herbelin who made a revision of the sorting library (includingh a certified merge-sort) and to Guillaume Melquiond who slightly revised and cleaned up the library of reals.

The module system evolved significantly. Besides the resolution of some efficiency issues and a more flexible construction of module types, Élie Soubiran brought a new model of name equivalence, the Δ-equivalence, which respects as much as possible the names given by the users. He also designed with Pierre Letouzey a new convenient operator <+ for nesting functor application, what provides a light notation for inheriting the properties of cascading modules.

The new tactic nsatz is due to Loïc Pottier. It works by computing Gröbner bases. Regarding the existing tactics, various improvements have been done by Matthieu Sozeau, Hugo Herbelin and Pierre Letouzey.

Matthieu Sozeau extended and refined the type classes and Program features (the Russell language). Pierre Letouzey maintained and improved the extraction mechanism. Bruno Barras and Élie Soubiran maintained the Coq checker, Julien Forest maintained the Function mechanism for reasoning over recursively defined functions. Matthieu Sozeau, Hugo Herbelin and Jean-Marc Notin maintained coqdoc. Frédéric Besson maintained the Micromega plateform for deciding systems of inequalities. Pierre Courtieu maintained the support for the Proof General Emacs interface. Claude Marché maintained the plugin for calling external provers (dp). Yves Bertot made some improvements to the libraries of lists and integers. Matthias Puech improved the search functions. Guillaume Melquiond usefully contributed here and there. Yann Régis-Gianas grounded the support for Unicode on a more standard and more robust basis.

Though invisible from outside, Arnaud Spiwack improved the general process of management of existential variables. Pierre Letouzey and Stéphane Glondu improved the compilation scheme of the Coq archive. Vincent Gross provided support to CoqIDE. Jean-Marc Notin provided support for benchmarking and archiving.

Many users helped by reporting problems, providing patches, suggesting improvements or making useful comments, either on the bug tracker or on the Coq-club mailing list. This includes but not exhaustively Cédric Auger, Arthur Charguéraud, François Garillot, Georges Gonthier, Robin Green, Stéphane Lescuyer, Eelis van der Weegen, ...

Though not directly related to the implementation, special thanks are going to Yves Bertot, Pierre Castéran, Adam Chlipala, and Benjamin Pierce for the excellent teaching materials they provided.

Paris, April 2010
Hugo Herbelin