Library Stdlib.PArith.Pnat
Properties of the injection from binary positive numbers
to Peano natural numbers
Original development by Pierre Crégut, CNET, Lannion, France
Pos.to_nat is a morphism for successor, addition, multiplication
Lemma inj_succ p : to_nat (succ p) = S (to_nat p).
Theorem inj_add p q : to_nat (p + q) = to_nat p + to_nat q.
Theorem inj_mul p q : to_nat (p * q) = to_nat p * to_nat q.
Mapping of xH, xO and xI through Pos.to_nat
Lemma inj_1 : to_nat 1 = 1.
Lemma inj_xO p : to_nat (xO p) = 2 * to_nat p.
Lemma inj_xI p : to_nat (xI p) = S (2 * to_nat p).
Pos.to_nat maps to the strictly positive subset of nat
Pos.to_nat is strictly positive
Pos.to_nat is a bijection between positive and
non-zero nat, with Pos.of_nat as reciprocal.
See Nat2Pos.id below for the dual equation.
Pos.to_nat is hence injective
Pos.to_nat is a morphism for comparison
Pos.to_nat is a morphism for lt, le, etc
Lemma inj_lt p q : (p < q)%positive <-> to_nat p < to_nat q.
Lemma inj_le p q : (p <= q)%positive <-> to_nat p <= to_nat q.
Lemma inj_gt p q : (p > q)%positive <-> to_nat p > to_nat q.
Lemma inj_ge p q : (p >= q)%positive <-> to_nat p >= to_nat q.
Pos.to_nat is a morphism for subtraction
Theorem inj_sub p q : (q < p)%positive ->
to_nat (p - q) = to_nat p - to_nat q.
Theorem inj_sub_max p q :
to_nat (p - q) = Nat.max 1 (to_nat p - to_nat q).
Theorem inj_pred p : (1 < p)%positive ->
to_nat (pred p) = Nat.pred (to_nat p).
Theorem inj_pred_max p :
to_nat (pred p) = Nat.max 1 (Peano.pred (to_nat p)).
Pos.to_nat and other operations
Lemma inj_min p q :
to_nat (min p q) = Nat.min (to_nat p) (to_nat q).
Lemma inj_max p q :
to_nat (max p q) = Nat.max (to_nat p) (to_nat q).
Theorem inj_iter p {A} (f:A->A) (x:A) :
Pos.iter f x p = nat_rect _ x (fun _ => f) (to_nat p).
Theorem inj_pow p q : to_nat (p ^ q) = to_nat p ^ to_nat q.
End Pos2Nat.
Module Nat2Pos.
Pos.of_nat is a bijection between non-zero nat and
positive, with Pos.to_nat as reciprocal.
See Pos2Nat.id above for the dual equation.
Theorem id (n:nat) : n<>0 -> Pos.to_nat (Pos.of_nat n) = n.
Theorem id_max (n:nat) : Pos.to_nat (Pos.of_nat n) = max 1 n.
Pos.of_nat is hence injective for non-zero numbers
Lemma inj (n m : nat) : n<>0 -> m<>0 -> Pos.of_nat n = Pos.of_nat m -> n = m.
Lemma inj_iff (n m : nat) : n<>0 -> m<>0 ->
(Pos.of_nat n = Pos.of_nat m <-> n = m).
Usual operations are morphisms with respect to Pos.of_nat
for non-zero numbers.
Lemma inj_0 : Pos.of_nat 0 = 1%positive.
Lemma inj_succ (n:nat) : n<>0 -> Pos.of_nat (S n) = Pos.succ (Pos.of_nat n).
Lemma inj_pred (n:nat) : Pos.of_nat (pred n) = Pos.pred (Pos.of_nat n).
Lemma inj_add (n m : nat) : n<>0 -> m<>0 ->
Pos.of_nat (n+m) = (Pos.of_nat n + Pos.of_nat m)%positive.
Lemma inj_mul (n m : nat) : n<>0 -> m<>0 ->
Pos.of_nat (n*m) = (Pos.of_nat n * Pos.of_nat m)%positive.
Lemma inj_compare (n m : nat) : n<>0 -> m<>0 ->
(n ?= m) = (Pos.of_nat n ?= Pos.of_nat m)%positive.
Lemma inj_sub (n m : nat) : m<>0 ->
Pos.of_nat (n-m) = (Pos.of_nat n - Pos.of_nat m)%positive.
Lemma inj_min (n m : nat) :
Pos.of_nat (min n m) = Pos.min (Pos.of_nat n) (Pos.of_nat m).
Lemma inj_max (n m : nat) :
Pos.of_nat (max n m) = Pos.max (Pos.of_nat n) (Pos.of_nat m).
Theorem inj_pow (n m : nat) : m <> 0 ->
Pos.of_nat (n^m) = (Pos.of_nat n ^ Pos.of_nat m)%positive.
End Nat2Pos.
Properties of the shifted injection from Peano natural numbers
to binary positive numbers
Composition of Pos.to_nat and Pos.of_succ_nat is successor
on positive
Composition of Pos.to_nat, Pos.of_succ_nat and Pos.pred
is identity on positive
Theorem pred_id p : Pos.pred (Pos.of_succ_nat (Pos.to_nat p)) = p.
End Pos2SuccNat.
Module SuccNat2Pos.
Composition of Pos.of_succ_nat and Pos.to_nat is successor on nat
Theorem id_succ (n:nat) : Pos.to_nat (Pos.of_succ_nat n) = S n.
Theorem pred_id (n:nat) : pred (Pos.to_nat (Pos.of_succ_nat n)) = n.
Pos.of_succ_nat is hence injective
Lemma inj (n m : nat) : Pos.of_succ_nat n = Pos.of_succ_nat m -> n = m.
Lemma inj_iff (n m : nat) : Pos.of_succ_nat n = Pos.of_succ_nat m <-> n = m.
Another formulation
Successor and comparison are morphisms with respect to
Pos.of_succ_nat
Lemma inj_succ n : Pos.of_succ_nat (S n) = Pos.succ (Pos.of_succ_nat n).
Lemma inj_compare n m :
(n ?= m) = (Pos.of_succ_nat n ?= Pos.of_succ_nat m)%positive.
Other operations, for instance Pos.add and plus aren't
directly related this way (we would need to compensate for
the successor hidden in Pos.of_succ_nat
For compatibility, old names and old-style lemmas
Notation Psucc_S := Pos2Nat.inj_succ (only parsing).
Notation Pplus_plus := Pos2Nat.inj_add (only parsing).
Notation Pmult_mult := Pos2Nat.inj_mul (only parsing).
Notation Pcompare_nat_compare := Pos2Nat.inj_compare (only parsing).
Notation nat_of_P_xH := Pos2Nat.inj_1 (only parsing).
Notation nat_of_P_xO := Pos2Nat.inj_xO (only parsing).
Notation nat_of_P_xI := Pos2Nat.inj_xI (only parsing).
Notation nat_of_P_is_S := Pos2Nat.is_succ (only parsing).
Notation nat_of_P_pos := Pos2Nat.is_pos (only parsing).
Notation nat_of_P_inj_iff := Pos2Nat.inj_iff (only parsing).
Notation nat_of_P_inj := Pos2Nat.inj (only parsing).
Notation Plt_lt := Pos2Nat.inj_lt (only parsing).
Notation Pgt_gt := Pos2Nat.inj_gt (only parsing).
Notation Ple_le := Pos2Nat.inj_le (only parsing).
Notation Pge_ge := Pos2Nat.inj_ge (only parsing).
Notation Pminus_minus := Pos2Nat.inj_sub (only parsing).
Notation iter_nat_of_P := @Pos2Nat.inj_iter (only parsing).
Notation nat_of_P_of_succ_nat := SuccNat2Pos.id_succ (only parsing).
Notation P_of_succ_nat_of_P := Pos2SuccNat.id_succ (only parsing).
Notation nat_of_P_succ_morphism := Pos2Nat.inj_succ (only parsing).
Notation nat_of_P_plus_morphism := Pos2Nat.inj_add (only parsing).
Notation nat_of_P_mult_morphism := Pos2Nat.inj_mul (only parsing).
Notation nat_of_P_compare_morphism := Pos2Nat.inj_compare (only parsing).
Notation lt_O_nat_of_P := Pos2Nat.is_pos (only parsing).
Notation ZL4 := Pos2Nat.is_succ (only parsing).
Notation nat_of_P_o_P_of_succ_nat_eq_succ := SuccNat2Pos.id_succ (only parsing).
Notation P_of_succ_nat_o_nat_of_P_eq_succ := Pos2SuccNat.id_succ (only parsing).
Notation pred_o_P_of_succ_nat_o_nat_of_P_eq_id := Pos2SuccNat.pred_id (only parsing).
Lemma nat_of_P_minus_morphism p q :
Pos.compare_cont Eq p q = Gt ->
Pos.to_nat (p - q) = Pos.to_nat p - Pos.to_nat q.
Lemma nat_of_P_lt_Lt_compare_morphism p q :
Pos.compare_cont Eq p q = Lt -> Pos.to_nat p < Pos.to_nat q.
Lemma nat_of_P_gt_Gt_compare_morphism p q :
Pos.compare_cont Eq p q = Gt -> Pos.to_nat p > Pos.to_nat q.
Lemma nat_of_P_lt_Lt_compare_complement_morphism p q :
Pos.to_nat p < Pos.to_nat q -> Pos.compare_cont Eq p q = Lt.
Lemma nat_of_P_gt_Gt_compare_complement_morphism p q :
Pos.to_nat p > Pos.to_nat q -> Pos.compare_cont Eq p q = Gt.
Old intermediate results about Pmult_nat
Section ObsoletePmultNat.
Lemma Pmult_nat_mult : forall p n,
Pmult_nat p n = Pos.to_nat p * n.
Lemma Pmult_nat_succ_morphism :
forall p n, Pmult_nat (Pos.succ p) n = n + Pmult_nat p n.
Theorem Pmult_nat_l_plus_morphism :
forall p q n, Pmult_nat (p + q) n = Pmult_nat p n + Pmult_nat q n.
Theorem Pmult_nat_plus_carry_morphism :
forall p q n, Pmult_nat (Pos.add_carry p q) n = n + Pmult_nat (p + q) n.
Lemma Pmult_nat_r_plus_morphism :
forall p n, Pmult_nat p (n + n) = Pmult_nat p n + Pmult_nat p n.
Lemma ZL6 : forall p, Pmult_nat p 2 = Pos.to_nat p + Pos.to_nat p.
Lemma le_Pmult_nat : forall p n, n <= Pmult_nat p n.
End ObsoletePmultNat.