Library Stdlib.Reals.PSeries_reg
Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Ranalysis1.
Require Import MVT.
Require Import Lra.
Local Open Scope R_scope.
Definition Boule (x:R) (r:posreal) (y:R) : Prop := Rabs (y - x) < r.
Lemma Boule_convex : forall c d x y z,
Boule c d x -> Boule c d y -> x <= z <= y -> Boule c d z.
Definition boule_of_interval x y (h : x < y) :
{c :R & {r : posreal | c - r = x /\ c + r = y}}.
Definition boule_in_interval x y z (h : x < z < y) :
{c : R & {r | Boule c r z /\ x < c - r /\ c + r < y}}.
Lemma Ball_in_inter : forall c1 c2 r1 r2 x,
Boule c1 r1 x -> Boule c2 r2 x ->
{r3 : posreal | forall y, Boule x r3 y -> Boule c1 r1 y /\ Boule c2 r2 y}.
Lemma Boule_center : forall x r, Boule x r x.
Uniform convergence
Definition CVU (fn:nat -> R -> R) (f:R -> R) (x:R)
(r:posreal) : Prop :=
forall eps:R,
0 < eps ->
exists N : nat,
(forall (n:nat) (y:R),
(N <= n)%nat -> Boule x r y -> Rabs (f y - fn n y) < eps).
(r:posreal) : Prop :=
forall eps:R,
0 < eps ->
exists N : nat,
(forall (n:nat) (y:R),
(N <= n)%nat -> Boule x r y -> Rabs (f y - fn n y) < eps).
Normal convergence
Definition CVN_r (fn:nat -> R -> R) (r:posreal) : Type :=
{ An:nat -> R &
{ l:R |
Un_cv (fun n:nat => sum_f_R0 (fun k:nat => Rabs (An k)) n) l /\
(forall (n:nat) (y:R), Boule 0 r y -> Rabs (fn n y) <= An n) } }.
Definition CVN_R (fn:nat -> R -> R) : Type := forall r:posreal, CVN_r fn r.
Definition SFL (fn:nat -> R -> R)
(cv:forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l })
(y:R) : R := let (a,_) := cv y in a.
{ An:nat -> R &
{ l:R |
Un_cv (fun n:nat => sum_f_R0 (fun k:nat => Rabs (An k)) n) l /\
(forall (n:nat) (y:R), Boule 0 r y -> Rabs (fn n y) <= An n) } }.
Definition CVN_R (fn:nat -> R -> R) : Type := forall r:posreal, CVN_r fn r.
Definition SFL (fn:nat -> R -> R)
(cv:forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l })
(y:R) : R := let (a,_) := cv y in a.
In a complete space, normal convergence implies uniform convergence
Lemma CVN_CVU :
forall (fn:nat -> R -> R)
(cv:forall x:R, {l:R | Un_cv (fun N:nat => SP fn N x) l })
(r:posreal), CVN_r fn r -> CVU (fun n:nat => SP fn n) (SFL fn cv) 0 r.
forall (fn:nat -> R -> R)
(cv:forall x:R, {l:R | Un_cv (fun N:nat => SP fn N x) l })
(r:posreal), CVN_r fn r -> CVU (fun n:nat => SP fn n) (SFL fn cv) 0 r.
Each limit of a sequence of functions which converges uniformly is continue
Lemma CVU_continuity :
forall (fn:nat -> R -> R) (f:R -> R) (x:R) (r:posreal),
CVU fn f x r ->
(forall (n:nat) (y:R), Boule x r y -> continuity_pt (fn n) y) ->
forall y:R, Boule x r y -> continuity_pt f y.
Lemma continuity_pt_finite_SF :
forall (fn:nat -> R -> R) (N:nat) (x:R),
(forall n:nat, (n <= N)%nat -> continuity_pt (fn n) x) ->
continuity_pt (fun y:R => sum_f_R0 (fun k:nat => fn k y) N) x.
forall (fn:nat -> R -> R) (f:R -> R) (x:R) (r:posreal),
CVU fn f x r ->
(forall (n:nat) (y:R), Boule x r y -> continuity_pt (fn n) y) ->
forall y:R, Boule x r y -> continuity_pt f y.
Lemma continuity_pt_finite_SF :
forall (fn:nat -> R -> R) (N:nat) (x:R),
(forall n:nat, (n <= N)%nat -> continuity_pt (fn n) x) ->
continuity_pt (fun y:R => sum_f_R0 (fun k:nat => fn k y) N) x.
Continuity and normal convergence
Lemma SFL_continuity_pt :
forall (fn:nat -> R -> R)
(cv:forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l })
(r:posreal),
CVN_r fn r ->
(forall (n:nat) (y:R), Boule 0 r y -> continuity_pt (fn n) y) ->
forall y:R, Boule 0 r y -> continuity_pt (SFL fn cv) y.
Lemma SFL_continuity :
forall (fn:nat -> R -> R)
(cv:forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }),
CVN_R fn -> (forall n:nat, continuity (fn n)) -> continuity (SFL fn cv).
forall (fn:nat -> R -> R)
(cv:forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l })
(r:posreal),
CVN_r fn r ->
(forall (n:nat) (y:R), Boule 0 r y -> continuity_pt (fn n) y) ->
forall y:R, Boule 0 r y -> continuity_pt (SFL fn cv) y.
Lemma SFL_continuity :
forall (fn:nat -> R -> R)
(cv:forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }),
CVN_R fn -> (forall n:nat, continuity (fn n)) -> continuity (SFL fn cv).
As R is complete, normal convergence implies that (fn) is simply-uniformly convergent
Lemma CVN_R_CVS :
forall fn:nat -> R -> R,
CVN_R fn -> forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }.
Lemma CVU_cv : forall f g c d, CVU f g c d ->
forall x, Boule c d x -> Un_cv (fun n => f n x) (g x).
Lemma CVU_ext_lim :
forall f g1 g2 c d, CVU f g1 c d -> (forall x, Boule c d x -> g1 x = g2 x) ->
CVU f g2 c d.
Lemma CVU_derivable :
forall f f' g g' c d,
CVU f' g' c d ->
(forall x, Boule c d x -> Un_cv (fun n => f n x) (g x)) ->
(forall n x, Boule c d x -> derivable_pt_lim (f n) x (f' n x)) ->
forall x, Boule c d x -> derivable_pt_lim g x (g' x).
forall fn:nat -> R -> R,
CVN_R fn -> forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }.
Lemma CVU_cv : forall f g c d, CVU f g c d ->
forall x, Boule c d x -> Un_cv (fun n => f n x) (g x).
Lemma CVU_ext_lim :
forall f g1 g2 c d, CVU f g1 c d -> (forall x, Boule c d x -> g1 x = g2 x) ->
CVU f g2 c d.
Lemma CVU_derivable :
forall f f' g g' c d,
CVU f' g' c d ->
(forall x, Boule c d x -> Un_cv (fun n => f n x) (g x)) ->
(forall n x, Boule c d x -> derivable_pt_lim (f n) x (f' n x)) ->
forall x, Boule c d x -> derivable_pt_lim g x (g' x).