Library Stdlib.Sets.Powerset_Classical_facts
Require Export Ensembles.
Require Export Constructive_sets.
Require Export Relations_1.
Require Export Relations_1_facts.
Require Export Partial_Order.
Require Export Cpo.
Require Export Powerset.
Require Export Powerset_facts.
Require Export Classical.
Require Export Classical_sets.
Section Sets_as_an_algebra.
Variable U : Type.
Lemma sincl_add_x :
forall (A B:Ensemble U) (x:U),
~ In U A x ->
Strict_Included U (Add U A x) (Add U B x) -> Strict_Included U A B.
Lemma incl_soustr_in :
forall (X:Ensemble U) (x:U), In U X x -> Included U (Subtract U X x) X.
Lemma incl_soustr :
forall (X Y:Ensemble U) (x:U),
Included U X Y -> Included U (Subtract U X x) (Subtract U Y x).
Lemma incl_soustr_add_l :
forall (X:Ensemble U) (x:U), Included U (Subtract U (Add U X x) x) X.
Lemma incl_soustr_add_r :
forall (X:Ensemble U) (x:U),
~ In U X x -> Included U X (Subtract U (Add U X x) x).
#[local]
Hint Resolve incl_soustr_add_r: sets.
Lemma add_soustr_2 :
forall (X:Ensemble U) (x:U),
In U X x -> Included U X (Add U (Subtract U X x) x).
Lemma add_soustr_1 :
forall (X:Ensemble U) (x:U),
In U X x -> Included U (Add U (Subtract U X x) x) X.
Lemma add_soustr_xy :
forall (X:Ensemble U) (x y:U),
x <> y -> Subtract U (Add U X x) y = Add U (Subtract U X y) x.
Lemma incl_st_add_soustr :
forall (X Y:Ensemble U) (x:U),
~ In U X x ->
Strict_Included U (Add U X x) Y -> Strict_Included U X (Subtract U Y x).
Lemma Sub_Add_new :
forall (X:Ensemble U) (x:U), ~ In U X x -> X = Subtract U (Add U X x) x.
Lemma Simplify_add :
forall (X X0:Ensemble U) (x:U),
~ In U X x -> ~ In U X0 x -> Add U X x = Add U X0 x -> X = X0.
Lemma Included_Add :
forall (X A:Ensemble U) (x:U),
Included U X (Add U A x) ->
Included U X A \/ (exists A' : _, X = Add U A' x /\ Included U A' A).
Lemma setcover_inv :
forall A x y:Ensemble U,
covers (Ensemble U) (Power_set_PO U A) y x ->
Strict_Included U x y /\
(forall z:Ensemble U, Included U x z -> Included U z y -> x = z \/ z = y).
Theorem Add_covers :
forall A a:Ensemble U,
Included U a A ->
forall x:U,
In U A x ->
~ In U a x -> covers (Ensemble U) (Power_set_PO U A) (Add U a x) a.
Theorem covers_Add :
forall A a a':Ensemble U,
Included U a A ->
Included U a' A ->
covers (Ensemble U) (Power_set_PO U A) a' a ->
exists x : _, a' = Add U a x /\ In U A x /\ ~ In U a x.
Theorem covers_is_Add :
forall A a a':Ensemble U,
Included U a A ->
Included U a' A ->
(covers (Ensemble U) (Power_set_PO U A) a' a <->
(exists x : _, a' = Add U a x /\ In U A x /\ ~ In U a x)).
Theorem Singleton_atomic :
forall (x:U) (A:Ensemble U),
In U A x ->
covers (Ensemble U) (Power_set_PO U A) (Singleton U x) (Empty_set U).
Lemma less_than_singleton :
forall (X:Ensemble U) (x:U),
Strict_Included U X (Singleton U x) -> X = Empty_set U.
End Sets_as_an_algebra.
#[global]
Hint Resolve incl_soustr_in: sets.
#[global]
Hint Resolve incl_soustr: sets.
#[global]
Hint Resolve incl_soustr_add_l: sets.
#[global]
Hint Resolve incl_soustr_add_r: sets.
#[global]
Hint Resolve add_soustr_1 add_soustr_2: sets.
#[global]
Hint Resolve add_soustr_xy: sets.