Module UState
This file defines universe unification states which are part of evarmaps. Most of the API below is reexported in Evd
. Consider using higher-level primitives when needed.
type t
Type of universe unification states. They allow the incremental building of universe constraints during an interactive proof.
Constructors
val empty : t
val make : lbound:Univ.Level.t -> UGraph.t -> t
val make_with_initial_binders : lbound:Univ.Level.t -> UGraph.t -> Names.lident list -> t
val is_empty : t -> bool
val union : t -> t -> t
val of_context_set : Univ.ContextSet.t -> t
val of_binders : UnivNames.universe_binders -> t
val universe_binders : t -> UnivNames.universe_binders
Projections
val context_set : t -> Univ.ContextSet.t
The local context of the state, i.e. a set of bound variables together with their associated constraints.
val subst : t -> UnivSubst.universe_opt_subst
The local universes that are unification variables
val algebraics : t -> Univ.LSet.t
The subset of unification variables that can be instantiated with algebraic universes as they appear in inferred types only.
val constraints : t -> Univ.Constraint.t
Shorthand for
context_set
composed withContextSet
.constraints.
val context : t -> Univ.UContext.t
Shorthand for
context_set
withContext_set
.to_context.
val univ_entry : poly:bool -> t -> Entries.universes_entry
Pick from
context
orcontext_set
based onpoly
.
val const_univ_entry : poly:bool -> t -> Entries.universes_entry
Constraints handling
val drop_weak_constraints : bool Stdlib.ref
val add_constraints : t -> Univ.Constraint.t -> t
- raises UniversesDiffer
when universes differ
val add_universe_constraints : t -> UnivProblem.Set.t -> t
- raises UniversesDiffer
when universes differ
Names
val universe_of_name : t -> Names.Id.t -> Univ.Level.t
Retrieve the universe associated to the name.
Unification
val restrict_universe_context : lbound:Univ.Level.t -> Univ.ContextSet.t -> Univ.LSet.t -> Univ.ContextSet.t
restrict_universe_context lbound (univs,csts) keep
restrictsunivs
to the universes inkeep
. The constraintscsts
are adjusted so that transitive constraints between remaining universes (those inkeep
and those not inunivs
) are preserved.
val restrict : t -> Univ.LSet.t -> t
restrict uctx ctx
restricts the local universes ofuctx
toctx
extended by local named universes and side effect universes (fromdemote_seff_univs
). Transitive constraints between retained universes are preserved.
val demote_seff_univs : Safe_typing.private_constants Entries.definition_entry -> t -> t
val univ_rigid : rigid
val univ_flexible : rigid
val univ_flexible_alg : rigid
val merge : ?loc:Loc.t -> sideff:bool -> extend:bool -> rigid -> t -> Univ.ContextSet.t -> t
val merge_subst : t -> UnivSubst.universe_opt_subst -> t
val emit_side_effects : Safe_typing.private_constants -> t -> t
val new_univ_variable : ?loc:Loc.t -> rigid -> Names.Id.t option -> t -> t * Univ.Level.t
val add_global_univ : t -> Univ.Level.t -> t
val make_flexible_variable : t -> algebraic:bool -> Univ.Level.t -> t
make_flexible_variable g algebraic l
Turn the variable
l
flexible, and algebraic ifalgebraic
is true andl
can be. That is if there are no strict upper constraints onl
and and it does not appear in the instance of any non-algebraic universe. Otherwise the variable is just made flexible.If
l
is already algebraic it will remain so even withalgebraic:false
.
val make_nonalgebraic_variable : t -> Univ.Level.t -> t
Make the level non algebraic. Undefined behaviour on already-defined algebraics.
val make_flexible_nonalgebraic : t -> t
Turn all undefined flexible algebraic variables into simply flexible ones. Can be used in case the variables might appear in universe instances (typically for polymorphic program obligations).
val is_sort_variable : t -> Sorts.t -> Univ.Level.t option
val normalize_variables : t -> Univ.universe_subst * t
val constrain_variables : Univ.LSet.t -> t -> t
val abstract_undefined_variables : t -> t
val fix_undefined_variables : t -> t
val refresh_undefined_univ_variables : t -> t * Univ.universe_level_subst
val minimize : t -> t
Universe minimization
type ('a, 'b) gen_universe_decl
=
{
univdecl_instance : 'a;
univdecl_extensible_instance : bool;
univdecl_constraints : 'b;
univdecl_extensible_constraints : bool;
}
type universe_decl
= (Names.lident list, Univ.Constraint.t) gen_universe_decl
val default_univ_decl : universe_decl
val check_univ_decl : poly:bool -> t -> universe_decl -> Entries.universes_entry
check_univ_decl ctx decl
If non extensible in
decl
, check that the local universes (resp. universe constraints) inctx
are implied bydecl
.Return a
Entries.constant_universes_entry
containing the local universes ofctx
and their constraints.When polymorphic, the universes corresponding to
decl.univdecl_instance
come first in the order defined by that list.
val check_mono_univ_decl : t -> universe_decl -> Univ.ContextSet.t
TODO: Document me
val update_sigma_env : t -> Environ.env -> t
Pretty-printing
val pr_uctx_level : t -> Univ.Level.t -> Pp.t
val qualid_of_level : t -> Univ.Level.t -> Libnames.qualid option
val pr_weak : (Univ.Level.t -> Pp.t) -> t -> Pp.t