Library Coq.Logic.Hurkens
Exploiting Hurkens's paradox [Hurkens95] for system U- so as to
derive various contradictory contexts.
The file is divided into various sub-modules which all follow the
same structure: a section introduces the contradictory hypotheses
and a theorem named paradox concludes the module with a proof of
False.
References:
- The Generic module contains the actual Hurkens's paradox for a
postulated shallow encoding of system U- in Coq. This is an
adaptation by Arnaud Spiwack of a previous, more restricted
implementation by Herman Geuvers. It is used to derive every
other special cases of the paradox in this file.
- The NoRetractToImpredicativeUniverse module contains a simple
and effective formulation by Herman Geuvers [Geuvers01] of a
result by Thierry Coquand [Coquand90]. It states that no
impredicative sort can contain a type of which it is a
retract. This result implies that Coq with classical logic
stated in impredicative Set is inconsistent and that classical
logic stated in Prop implies proof-irrelevance (see
ClassicalFacts.v)
- The NoRetractFromSmallPropositionToProp module is a
specialisation of the NoRetractToImpredicativeUniverse module
to the case where the impredicative sort is Prop.
- The NoRetractToModalProposition module is a strengthening of
the NoRetractFromSmallPropositionToProp module. It shows that
given a monadic modality (aka closure operator) M, the type of
modal propositions (i.e. such that M A -> A) cannot be a
retract of a modal proposition. It is an example of use of the
paradox where the universes of system U- are not mapped to
universes of Coq.
- The NoRetractToNegativeProp module is the specialisation of
the NoRetractFromSmallPropositionToProp module where the
modality is double-negation. This result implies that the
principle of weak excluded middle (forall A, ~~A\/~A) implies
a weak variant of proof irrelevance.
- The NoRetractFromTypeToProp module proves that Prop cannot
be a retract of a larger type.
- The TypeNeqSmallType module proves that Type is different
from any smaller type.
- The PropNeqType module proves that Prop is different from any larger Type. It is an instance of the previous result.
- [Coquand90] T. Coquand, "Metamathematical Investigations of a
Calculus of Constructions", Proceedings of Logic in Computer
Science (LICS'90), 1990.
- [Hurkens95] A. J. Hurkens, "A simplification of Girard's paradox",
Proceedings of the 2nd international conference Typed Lambda-Calculi
and Applications (TLCA'95), 1995.
- [Geuvers01] H. Geuvers, "Inconsistency of Classical Logic in Type Theory", 2001, revised 2007 (see http://www.cs.ru.nl/~herman/PUBS/newnote.ps.gz).
A modular proof of Hurkens's paradox.
Axiomatisation of impredicative universes in a Martin-Löf style
Large universe
Variable Forall1 : forall u:U1, (El1 u -> U1) -> U1.
Notation "'∀₁' x : A , B" := (Forall1 A (fun x => B)).
Notation "A '⟶₁' B" := (Forall1 A (fun _ => B)).
Variable lam1 : forall u B, (forall x:El1 u, El1 (B x)) -> El1 (∀₁ x:u, B x).
Notation "'λ₁' x , u" := (lam1 _ _ (fun x => u)).
Variable app1 : forall u B (f:El1 (Forall1 u B)) (x:El1 u), El1 (B x).
Notation "f '·₁' x" := (app1 _ _ f x).
Variable beta1 : forall u B (f:forall x:El1 u, El1 (B x)) x,
(λ₁ y, f y) ·₁ x = f x.
Notation "'∀₁' x : A , B" := (Forall1 A (fun x => B)).
Notation "A '⟶₁' B" := (Forall1 A (fun _ => B)).
Variable lam1 : forall u B, (forall x:El1 u, El1 (B x)) -> El1 (∀₁ x:u, B x).
Notation "'λ₁' x , u" := (lam1 _ _ (fun x => u)).
Variable app1 : forall u B (f:El1 (Forall1 u B)) (x:El1 u), El1 (B x).
Notation "f '·₁' x" := (app1 _ _ f x).
Variable beta1 : forall u B (f:forall x:El1 u, El1 (B x)) x,
(λ₁ y, f y) ·₁ x = f x.
Variable ForallU1 : (U1->U1) -> U1.
Notation "'∀₂' A , F" := (ForallU1 (fun A => F)).
Variable lamU1 : forall F, (forall A:U1, El1 (F A)) -> El1 (∀₂ A, F A).
Notation "'λ₂' x , u" := (lamU1 _ (fun x => u)).
Variable appU1 : forall F (f:El1(∀₂ A,F A)) (A:U1), El1 (F A).
Notation "f '·₁' [ A ]" := (appU1 _ f A).
Variable betaU1 : forall F (f:forall A:U1, El1 (F A)) A,
(λ₂ x, f x) ·₁ [ A ] = f A.
Notation "'∀₂' A , F" := (ForallU1 (fun A => F)).
Variable lamU1 : forall F, (forall A:U1, El1 (F A)) -> El1 (∀₂ A, F A).
Notation "'λ₂' x , u" := (lamU1 _ (fun x => u)).
Variable appU1 : forall F (f:El1(∀₂ A,F A)) (A:U1), El1 (F A).
Notation "f '·₁' [ A ]" := (appU1 _ f A).
Variable betaU1 : forall F (f:forall A:U1, El1 (F A)) A,
(λ₂ x, f x) ·₁ [ A ] = f A.
Variable Forall0 : forall u:U0, (El0 u -> U0) -> U0.
Notation "'∀₀' x : A , B" := (Forall0 A (fun x => B)).
Notation "A '⟶₀' B" := (Forall0 A (fun _ => B)).
Variable lam0 : forall u B, (forall x:El0 u, El0 (B x)) -> El0 (∀₀ x:u, B x).
Notation "'λ₀' x , u" := (lam0 _ _ (fun x => u)).
Variable app0 : forall u B (f:El0 (Forall0 u B)) (x:El0 u), El0 (B x).
Notation "f '·₀' x" := (app0 _ _ f x).
Notation "'∀₀' x : A , B" := (Forall0 A (fun x => B)).
Notation "A '⟶₀' B" := (Forall0 A (fun _ => B)).
Variable lam0 : forall u B, (forall x:El0 u, El0 (B x)) -> El0 (∀₀ x:u, B x).
Notation "'λ₀' x , u" := (lam0 _ _ (fun x => u)).
Variable app0 : forall u B (f:El0 (Forall0 u B)) (x:El0 u), El0 (B x).
Notation "f '·₀' x" := (app0 _ _ f x).
Variable ForallU0 : forall u:U1, (El1 u->U0) -> U0.
Notation "'∀₀¹' A : U , F" := (ForallU0 U (fun A => F)).
Variable lamU0 : forall U F, (forall A:El1 U, El0 (F A)) -> El0 (∀₀¹ A:U, F A).
Notation "'λ₀¹' x , u" := (lamU0 _ _ (fun x => u)).
Variable appU0 : forall U F (f:El0(∀₀¹ A:U,F A)) (A:El1 U), El0 (F A).
Notation "f '·₀' [ A ]" := (appU0 _ _ f A).
Notation "'∀₀¹' A : U , F" := (ForallU0 U (fun A => F)).
Variable lamU0 : forall U F, (forall A:El1 U, El0 (F A)) -> El0 (∀₀¹ A:U, F A).
Notation "'λ₀¹' x , u" := (lamU0 _ _ (fun x => u)).
Variable appU0 : forall U F (f:El0(∀₀¹ A:U,F A)) (A:El1 U), El0 (F A).
Notation "f '·₀' [ A ]" := (appU0 _ _ f A).
Local Ltac simplify :=
(repeat rewrite ?beta1, ?betaU1);
lazy beta.
Local Ltac simplify_in h :=
(repeat rewrite ?beta1, ?betaU1 in h);
lazy beta in h.
(repeat rewrite ?beta1, ?betaU1);
lazy beta.
Local Ltac simplify_in h :=
(repeat rewrite ?beta1, ?betaU1 in h);
lazy beta in h.
Definition V : U1 := ∀₂ A, ((A ⟶₁ u0) ⟶₁ A ⟶₁ u0) ⟶₁ A ⟶₁ u0.
Definition U : U1 := V ⟶₁ u0.
Definition sb (z:El1 V) : El1 V := λ₂ A, λ₁ r, λ₁ a, r ·₁ (z·₁[A]·₁r) ·₁ a.
Definition le (i:El1 (U⟶₁u0)) (x:El1 U) : U0 :=
x ·₁ (λ₂ A, λ₁ r, λ₁ a, i ·₁ (λ₁ v, (sb v) ·₁ [A] ·₁ r ·₁ a)).
Definition le' : El1 ((U⟶₁u0) ⟶₁ U ⟶₁ u0) := λ₁ i, λ₁ x, le i x.
Definition induct (i:El1 (U⟶₁u0)) : U0 :=
∀₀¹ x:U, le i x ⟶₀ i ·₁ x.
Definition WF : El1 U := λ₁ z, (induct (z·₁[U] ·₁ le')).
Definition I (x:El1 U) : U0 :=
(∀₀¹ i:U⟶₁u0, le i x ⟶₀ i ·₁ (λ₁ v, (sb v) ·₁ [U] ·₁ le' ·₁ x)) ⟶₀ F
.
Lemma Omega : El0 (∀₀¹ i:U⟶₁u0, induct i ⟶₀ i ·₁ WF).
Proof.
refine (λ₀¹ i, λ₀ y, _).
refine (y·₀[_]·₀_).
unfold le,WF,induct. simplify.
refine (λ₀¹ x, λ₀ h0, _). simplify.
refine (y·₀[_]·₀_).
unfold le. simplify.
unfold sb at 1. simplify.
unfold le' at 1. simplify.
exact h0.
Qed.
Lemma lemma1 : El0 (induct (λ₁ u, I u)).
Proof.
unfold induct.
refine (λ₀¹ x, λ₀ p, _). simplify.
refine (λ₀ q,_).
assert (El0 (I (λ₁ v, (sb v)·₁[U]·₁le'·₁x))) as h.
{ generalize (q·₀[λ₁ u, I u]·₀p). simplify.
intros q'.
exact q'. }
refine (h·₀_).
refine (λ₀¹ i,_).
refine (λ₀ h', _).
generalize (q·₀[λ₁ y, i ·₁ (λ₁ v, (sb v)·₁[U] ·₁ le' ·₁ y)]). simplify.
intros q'.
refine (q'·₀_). clear q'.
unfold le at 1 in h'. simplify_in h'.
unfold sb at 1 in h'. simplify_in h'.
unfold le' at 1 in h'. simplify_in h'.
exact h'.
Qed.
Lemma lemma2 : El0 ((∀₀¹i:U⟶₁u0, induct i ⟶₀ i·₁WF) ⟶₀ F).
Proof.
refine (λ₀ x, _).
assert (El0 (I WF)) as h.
{ generalize (x·₀[λ₁ u, I u]·₀lemma1). simplify.
intros q.
exact q. }
refine (h·₀_). clear h.
refine (λ₀¹ i, λ₀ h0, _).
generalize (x·₀[λ₁ y, i·₁(λ₁ v, (sb v)·₁[U]·₁le'·₁y)]). simplify.
intros q.
refine (q·₀_). clear q.
unfold le in h0. simplify_in h0.
unfold WF in h0. simplify_in h0.
exact h0.
Qed.
Theorem paradox : El0 F.
Proof.
exact (lemma2·₀Omega).
Qed.
End Paradox.
The paradox tactic can be called as a shortcut to use the paradox.
Ltac paradox h :=
unshelve (refine ((fun h => _) (paradox _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ))).
End Generic.
unshelve (refine ((fun h => _) (paradox _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ))).
End Generic.
Impredicative universes are not retracts.
Module NoRetractToImpredicativeUniverse.
Section Paradox.
Let U2 := Type.
Let U1:U2 := Type.
Variable U0:U1.
u22u1_counit and u22u1_coherent only apply to dependent
product so that the equations happen in the smaller U1 rather
than U2. Indeed, it is not generally the case that one can
project from a large universe to an impredicative universe and
then get back the original type again. It would be too strong a
hypothesis to require (in particular, it is not true of
Prop). The formulation is reminiscent of the monadic
characteristic of the projection from a large type to Prop.
Hypothesis u22u1_counit : forall (F:U1->U1), u22u1 (forall A,F A) -> (forall A,F A).
Hypothesis u22u1_coherent : forall (F:U1 -> U1) (f:forall x:U1, F x) (x:U1),
u22u1_counit _ (u22u1_unit _ f) x = f x.
Hypothesis u22u1_coherent : forall (F:U1 -> U1) (f:forall x:U1, F x) (x:U1),
u22u1_counit _ (u22u1_unit _ f) x = f x.
Variable u02u1 : U0 -> U1.
Variable u12u0 : U1 -> U0.
Hypothesis u12u0_unit : forall (b:U1), b -> u02u1 (u12u0 b).
Hypothesis u12u0_counit : forall (b:U1), u02u1 (u12u0 b) -> b.
Variable u12u0 : U1 -> U0.
Hypothesis u12u0_unit : forall (b:U1), b -> u02u1 (u12u0 b).
Hypothesis u12u0_counit : forall (b:U1), u02u1 (u12u0 b) -> b.
Large universe
+ exact U1.
+ exact (fun X => X).
+ cbn. exact (fun u F => forall x:u, F x).
+ cbn. exact (fun _ _ x => x).
+ cbn. exact (fun _ _ x => x).
+ cbn. exact (fun F => u22u1 (forall x, F x)).
+ cbn. exact (fun _ x => u22u1_unit _ x).
+ cbn. exact (fun _ x => u22u1_counit _ x).
+ exact (fun X => X).
+ cbn. exact (fun u F => forall x:u, F x).
+ cbn. exact (fun _ _ x => x).
+ cbn. exact (fun _ _ x => x).
+ cbn. exact (fun F => u22u1 (forall x, F x)).
+ cbn. exact (fun _ x => u22u1_unit _ x).
+ cbn. exact (fun _ x => u22u1_counit _ x).
Small universe
The interpretation of the small universe is the image of
U0 in U1.
+ cbn. exact (fun X => u02u1 X).
+ cbn. exact (fun u F => u12u0 (forall x:(u02u1 u), u02u1 (F x))).
+ cbn. exact (fun u F => u12u0 (forall x:u, u02u1 (F x))).
+ cbn. exact (u12u0 F).
+ cbn in h.
exact (u12u0_counit _ h).
+ cbn. easy.
+ cbn. intros **. now rewrite u22u1_coherent.
+ cbn. intros * x. exact (u12u0_unit _ x).
+ cbn. intros * x. exact (u12u0_counit _ x).
+ cbn. intros * x. exact (u12u0_unit _ x).
+ cbn. intros * x. exact (u12u0_counit _ x).
Qed.
End Paradox.
End NoRetractToImpredicativeUniverse.
+ cbn. exact (fun u F => u12u0 (forall x:(u02u1 u), u02u1 (F x))).
+ cbn. exact (fun u F => u12u0 (forall x:u, u02u1 (F x))).
+ cbn. exact (u12u0 F).
+ cbn in h.
exact (u12u0_counit _ h).
+ cbn. easy.
+ cbn. intros **. now rewrite u22u1_coherent.
+ cbn. intros * x. exact (u12u0_unit _ x).
+ cbn. intros * x. exact (u12u0_counit _ x).
+ cbn. intros * x. exact (u12u0_unit _ x).
+ cbn. intros * x. exact (u12u0_counit _ x).
Qed.
End Paradox.
End NoRetractToImpredicativeUniverse.
Modal fragments of Prop are not retracts
Section Paradox.
Variable M : Prop -> Prop.
Hypothesis incr : forall A B:Prop, (A->B) -> M A -> M B.
Lemma strength: forall A (P:A->Prop), M(forall x:A,P x) -> forall x:A,M(P x).
Proof.
intros A P h x.
eapply incr in h; eauto.
Qed.
Definition MProp := { P:Prop | M P -> P }.
Definition El : MProp -> Prop := @proj1_sig _ _.
Lemma modal : forall P:MProp, M(El P) -> El P.
Proof.
intros [P m]. cbn.
exact m.
Qed.
Definition Forall {A:Type} (P:A->MProp) : MProp.
Proof.
unshelve (refine (exist _ _ _)).
+ exact (forall x:A, El (P x)).
+ intros h x.
eapply strength in h.
eauto using modal.
Defined.
Retract of the modal fragment of Prop in a small type
Variable bool : MProp.
Variable p2b : MProp -> El bool.
Variable b2p : El bool -> MProp.
Hypothesis p2p1 : forall A:MProp, El (b2p (p2b A)) -> El A.
Hypothesis p2p2 : forall A:MProp, El A -> El (b2p (p2b A)).
Large universe
+ exact MProp.
+ exact El.
+ exact (fun _ => Forall).
+ cbn. exact (fun _ _ f => f).
+ cbn. exact (fun _ _ f => f).
+ exact Forall.
+ cbn. exact (fun _ f => f).
+ cbn. exact (fun _ f => f).
+ exact El.
+ exact (fun _ => Forall).
+ cbn. exact (fun _ _ f => f).
+ cbn. exact (fun _ _ f => f).
+ exact Forall.
+ cbn. exact (fun _ f => f).
+ cbn. exact (fun _ f => f).
Small universe
+ exact bool.
+ exact (fun b => El (b2p b)).
+ cbn. exact (fun _ F => p2b (Forall (fun x => b2p (F x)))).
+ exact (fun _ F => p2b (Forall (fun x => b2p (F x)))).
+ apply p2b.
exact B.
+ cbn in h. auto.
+ cbn. easy.
+ cbn. easy.
+ cbn. auto.
+ cbn. intros * f.
apply p2p1 in f. cbn in f.
exact f.
+ cbn. auto.
+ cbn. intros * f.
apply p2p1 in f. cbn in f.
exact f.
Qed.
End Paradox.
End NoRetractToModalProposition.
+ exact (fun b => El (b2p b)).
+ cbn. exact (fun _ F => p2b (Forall (fun x => b2p (F x)))).
+ exact (fun _ F => p2b (Forall (fun x => b2p (F x)))).
+ apply p2b.
exact B.
+ cbn in h. auto.
+ cbn. easy.
+ cbn. easy.
+ cbn. auto.
+ cbn. intros * f.
apply p2p1 in f. cbn in f.
exact f.
+ cbn. auto.
+ cbn. intros * f.
apply p2p1 in f. cbn in f.
exact f.
Qed.
End Paradox.
End NoRetractToModalProposition.
The negative fragment of Prop is not a retract
Definition NProp := { P:Prop | ~~P -> P }.
Definition El : NProp -> Prop := @proj1_sig _ _.
Section Paradox.
Retract of the negative fragment of Prop in a small type
Variable bool : NProp.
Variable p2b : NProp -> El bool.
Variable b2p : El bool -> NProp.
Hypothesis p2p1 : forall A:NProp, El (b2p (p2b A)) -> El A.
Hypothesis p2p2 : forall A:NProp, El A -> El (b2p (p2b A)).
Theorem paradox : forall B:NProp, El B.
Proof.
intros B.
unshelve (refine ((fun h => _) (NoRetractToModalProposition.paradox _ _ _ _ _ _ _ _))).
+ exact (fun P => ~~P).
+ exact bool.
+ exact p2b.
+ exact b2p.
+ exact B.
+ exact h.
+ cbn. auto.
+ cbn. auto.
+ cbn. auto.
Qed.
End Paradox.
End NoRetractToNegativeProp.
Prop is not a retract
Definition NProp := { P:Prop | P -> P}.
Definition El : NProp -> Prop := @proj1_sig _ _.
Section MParadox.
Variable bool : NProp.
Variable p2b : NProp -> El bool.
Variable b2p : El bool -> NProp.
Hypothesis p2p1 : forall A:NProp, El (b2p (p2b A)) -> El A.
Hypothesis p2p2 : forall A:NProp, El A -> El (b2p (p2b A)).
Theorem mparadox : forall B:NProp, El B.
Proof.
intros B.
unshelve (refine ((fun h => _) (NoRetractToModalProposition.paradox _ _ _ _ _ _ _ _))).
+ exact (fun P => P).
+ exact bool.
+ exact p2b.
+ exact b2p.
+ exact B.
+ exact h.
+ cbn. auto.
+ cbn. auto.
+ cbn. auto.
Qed.
End MParadox.
Section Paradox.
Retract of Prop in a small type
Variable bool : Prop.
Variable p2b : Prop -> bool.
Variable b2p : bool -> Prop.
Hypothesis p2p1 : forall A:Prop, b2p (p2b A) -> A.
Hypothesis p2p2 : forall A:Prop, A -> b2p (p2b A).
Variable p2b : Prop -> bool.
Variable b2p : bool -> Prop.
Hypothesis p2p1 : forall A:Prop, b2p (p2b A) -> A.
Hypothesis p2p2 : forall A:Prop, A -> b2p (p2b A).
Theorem paradox : forall B:Prop, B.
Proof.
intros B.
unshelve (refine (mparadox (exist _ bool (fun x => x)) _ _ _ _
(exist _ B (fun x => x)))).
+ intros p. red. red. exact (p2b (El p)).
+ cbn. intros b. red. exists (b2p b). exact (fun x => x).
+ cbn. intros [A H]. cbn. apply p2p1.
+ cbn. intros [A H]. cbn. apply p2p2.
Qed.
End Paradox.
End NoRetractFromSmallPropositionToProp.
Large universes are not retracts of Prop.
Module NoRetractFromTypeToProp.
Definition Type2 := Type.
Definition Type1 := Type : Type2.
Section Paradox.
Variable down : Type1 -> Prop.
Variable up : Prop -> Type1.
Hypothesis up_down : forall (A:Type1), up (down A) = A :> Type1.
Large universe.
+ exact Type1.
+ exact (fun X => X).
+ cbn. exact (fun u F => forall x, F x).
+ cbn. exact (fun _ _ x => x).
+ cbn. exact (fun _ _ x => x).
+ exact (fun F => forall A:Prop, F(up A)).
+ cbn. exact (fun F f A => f (up A)).
+ cbn.
intros F f A.
specialize (f (down A)).
rewrite up_down in f.
exact f.
+ exact Prop.
+ cbn. exact (fun X => X).
+ cbn. exact (fun A P => forall x:A, P x).
+ cbn. exact (fun A P => forall x:A, P x).
+ cbn. exact P.
+ exact h.
+ cbn. easy.
+ cbn.
intros F f A.
destruct (up_down A). cbn.
reflexivity.
+ cbn. exact (fun _ _ x => x).
+ cbn. exact (fun _ _ x => x).
+ cbn. exact (fun _ _ x => x).
+ cbn. exact (fun _ _ x => x).
Qed.
End Paradox.
End NoRetractFromTypeToProp.
+ exact (fun X => X).
+ cbn. exact (fun u F => forall x, F x).
+ cbn. exact (fun _ _ x => x).
+ cbn. exact (fun _ _ x => x).
+ exact (fun F => forall A:Prop, F(up A)).
+ cbn. exact (fun F f A => f (up A)).
+ cbn.
intros F f A.
specialize (f (down A)).
rewrite up_down in f.
exact f.
+ exact Prop.
+ cbn. exact (fun X => X).
+ cbn. exact (fun A P => forall x:A, P x).
+ cbn. exact (fun A P => forall x:A, P x).
+ cbn. exact P.
+ exact h.
+ cbn. easy.
+ cbn.
intros F f A.
destruct (up_down A). cbn.
reflexivity.
+ cbn. exact (fun _ _ x => x).
+ cbn. exact (fun _ _ x => x).
+ cbn. exact (fun _ _ x => x).
+ cbn. exact (fun _ _ x => x).
Qed.
End Paradox.
End NoRetractFromTypeToProp.
Universe U is a retract of A
Let down (X:U) : A := @eq_rect _ _ (fun X => X) X _ h.
Let up (X:A) : U := @eq_rect_r _ _ (fun X => X) X _ h.
Lemma up_down : forall (X:U), up (down X) = X.
Proof.
unfold up,down.
rewrite <- h.
reflexivity.
Qed.
Theorem paradox : False.
Proof.
Generic.paradox p.
Large universe
+ exact U.
+ exact (fun X=>X).
+ cbn. exact (fun X F => forall x:X, F x).
+ cbn. exact (fun _ _ x => x).
+ cbn. exact (fun _ _ x => x).
+ exact (fun F => forall x:A, F (up x)).
+ cbn. exact (fun _ f => fun x:A => f (up x)).
+ cbn. intros * f X.
specialize (f (down X)).
rewrite up_down in f.
exact f.
+ exact (fun X=>X).
+ cbn. exact (fun X F => forall x:X, F x).
+ cbn. exact (fun _ _ x => x).
+ cbn. exact (fun _ _ x => x).
+ exact (fun F => forall x:A, F (up x)).
+ cbn. exact (fun _ f => fun x:A => f (up x)).
+ cbn. intros * f X.
specialize (f (down X)).
rewrite up_down in f.
exact f.
Small universe
The interpretation of A as a universe is U.
+ cbn. exact up.
+ cbn. exact (fun _ F => down (forall x, up (F x))).
+ cbn. exact (fun _ F => down (forall x, up (F x))).
+ cbn. exact (down False).
+ rewrite up_down in p.
exact p.
+ cbn. easy.
+ cbn. intros ? f X.
destruct (up_down X). cbn.
reflexivity.
+ cbn. intros ? ? f.
rewrite up_down.
exact f.
+ cbn. intros ? ? f.
rewrite up_down in f.
exact f.
+ cbn. intros ? ? f.
rewrite up_down.
exact f.
+ cbn. intros ? ? f.
rewrite up_down in f.
exact f.
Qed.
End Paradox.
End TypeNeqSmallType.
+ cbn. exact (fun _ F => down (forall x, up (F x))).
+ cbn. exact (fun _ F => down (forall x, up (F x))).
+ cbn. exact (down False).
+ rewrite up_down in p.
exact p.
+ cbn. easy.
+ cbn. intros ? f X.
destruct (up_down X). cbn.
reflexivity.
+ cbn. intros ? ? f.
rewrite up_down.
exact f.
+ cbn. intros ? ? f.
rewrite up_down in f.
exact f.
+ cbn. intros ? ? f.
rewrite up_down.
exact f.
+ cbn. intros ? ? f.
rewrite up_down in f.
exact f.
Qed.
End Paradox.
End TypeNeqSmallType.
Module PropNeqType.
Theorem paradox : Prop <> Type.
Proof.
intros h.
unshelve (refine (TypeNeqSmallType.paradox _ _)).
+ exact Prop.
+ easy.
Qed.
End PropNeqType.