Library Coq.Numbers.DecimalFacts
Require Import Decimal.
Lemma uint_dec (d d' : uint) : { d = d' } + { d <> d' }.
Lemma rev_revapp d d' :
rev (revapp d d') = revapp d' d.
Lemma rev_rev d : rev (rev d) = d.
Normalization on little-endian numbers
Fixpoint nztail d :=
match d with
| Nil => Nil
| D0 d => match nztail d with Nil => Nil | d' => D0 d' end
| D1 d => D1 (nztail d)
| D2 d => D2 (nztail d)
| D3 d => D3 (nztail d)
| D4 d => D4 (nztail d)
| D5 d => D5 (nztail d)
| D6 d => D6 (nztail d)
| D7 d => D7 (nztail d)
| D8 d => D8 (nztail d)
| D9 d => D9 (nztail d)
end.
Definition lnorm d :=
match nztail d with
| Nil => zero
| d => d
end.
Lemma nzhead_revapp_0 d d' : nztail d = Nil ->
nzhead (revapp d d') = nzhead d'.
Lemma nzhead_revapp d d' : nztail d <> Nil ->
nzhead (revapp d d') = revapp (nztail d) d'.
Lemma nzhead_rev d : nztail d <> Nil ->
nzhead (rev d) = rev (nztail d).
Lemma rev_nztail_rev d :
rev (nztail (rev d)) = nzhead d.
Lemma revapp_nil_inv d d' : revapp d d' = Nil -> d = Nil /\ d' = Nil.
Lemma rev_nil_inv d : rev d = Nil -> d = Nil.
Lemma rev_lnorm_rev d :
rev (lnorm (rev d)) = unorm d.
Lemma nzhead_nonzero d d' : nzhead d <> D0 d'.
Lemma unorm_0 d : unorm d = zero <-> nzhead d = Nil.
Lemma unorm_nonnil d : unorm d <> Nil.
Lemma nzhead_invol d : nzhead (nzhead d) = nzhead d.
Lemma unorm_invol d : unorm (unorm d) = unorm d.
Lemma norm_invol d : norm (norm d) = norm d.