Global Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (23119 entries) |
Notation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (950 entries) |
Module Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (746 entries) |
Variable Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (1492 entries) |
Library Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (523 entries) |
Lemma Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (10703 entries) |
Constructor Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (941 entries) |
Axiom Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (603 entries) |
Projection Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (465 entries) |
Inductive Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (290 entries) |
Section Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (473 entries) |
Instance Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (767 entries) |
Abbreviation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (1145 entries) |
Definition Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (3858 entries) |
Record Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (163 entries) |
I
I [constructor, in Coq.Init.Logic]i [projection, in Coq.Logic.Berardi]
I [constructor, in Coq.micromega.Tauto]
IAF [lemma, in Coq.Reals.MVT]
IAF_var [lemma, in Coq.Reals.MVT]
Iclosed_cons [instance, in Coq.setoid_ring.Ncring_tac]
Iclosed_nil [instance, in Coq.setoid_ring.Ncring_tac]
id [definition, in Coq.Reals.Ranalysis1]
id [abbreviation, in Coq.ssr.ssrfun]
id [definition, in Coq.Init.Datatypes]
ID [definition, in Coq.Init.Datatypes]
idempotent [definition, in Coq.ssr.ssrfun]
identity [inductive, in Coq.Init.Datatypes]
identity_refl [constructor, in Coq.Init.Datatypes]
identity_rect_r [definition, in Coq.Init.Logic_Type]
identity_rec_r [definition, in Coq.Init.Logic_Type]
identity_ind_r [definition, in Coq.Init.Logic_Type]
identity_congr [lemma, in Coq.Init.Logic_Type]
identity_trans [lemma, in Coq.Init.Logic_Type]
identity_sym [lemma, in Coq.Init.Logic_Type]
identity_is_a_congruence.z [variable, in Coq.Init.Logic_Type]
identity_is_a_congruence.y [variable, in Coq.Init.Logic_Type]
identity_is_a_congruence.x [variable, in Coq.Init.Logic_Type]
identity_is_a_congruence.f [variable, in Coq.Init.Logic_Type]
identity_is_a_congruence.B [variable, in Coq.Init.Logic_Type]
identity_is_a_congruence.A [variable, in Coq.Init.Logic_Type]
identity_is_a_congruence [section, in Coq.Init.Logic_Type]
idfun [definition, in Coq.ssr.ssrfun]
IDmorph [lemma, in Coq.setoid_ring.Ring_theory]
idP [lemma, in Coq.ssr.ssrbool]
IDphi [definition, in Coq.setoid_ring.Ring_theory]
idPn [lemma, in Coq.ssr.ssrbool]
idProp [definition, in Coq.Init.Datatypes]
IDProp [definition, in Coq.Init.Datatypes]
ids_of_formula [definition, in Coq.micromega.Tauto]
id_int [definition, in Coq.Numbers.Cyclic.Int63.Int63]
id_phi_N [definition, in Coq.setoid_ring.Ncring]
id_phi_N [definition, in Coq.setoid_ring.Ring_theory]
ifb [definition, in Coq.Bool.Bool]
ifdec [definition, in Coq.Bool.DecBool]
ifdec_right [lemma, in Coq.Bool.DecBool]
ifdec_left [lemma, in Coq.Bool.DecBool]
ifE [lemma, in Coq.ssr.ssrbool]
iff [definition, in Coq.Init.Logic]
ifF [lemma, in Coq.ssr.ssrbool]
Iffalse [constructor, in Coq.Bool.IfProp]
Iffalse_inv [lemma, in Coq.Bool.IfProp]
iffLR [lemma, in Coq.ssr.ssreflect]
iffLRn [lemma, in Coq.ssr.ssreflect]
iffP [lemma, in Coq.ssr.ssrbool]
iffRL [lemma, in Coq.ssr.ssreflect]
iffRLn [lemma, in Coq.ssr.ssreflect]
iffT [definition, in Coq.Classes.CRelationClasses]
iffT_Transitive [instance, in Coq.Classes.CRelationClasses]
iffT_Symmetric [instance, in Coq.Classes.CRelationClasses]
iffT_Reflexive [instance, in Coq.Classes.CRelationClasses]
iffT_flip_arrow_subrelation [instance, in Coq.Classes.CMorphisms]
iffT_arrow_subrelation [instance, in Coq.Classes.CMorphisms]
iff_flip_impl_subrelation [instance, in Coq.Classes.Morphisms]
iff_impl_subrelation [instance, in Coq.Classes.Morphisms]
iff_stepl [lemma, in Coq.Init.Logic]
iff_to_and [lemma, in Coq.Init.Logic]
iff_and [lemma, in Coq.Init.Logic]
iff_sym [lemma, in Coq.Init.Logic]
iff_trans [lemma, in Coq.Init.Logic]
iff_refl [lemma, in Coq.Init.Logic]
iff_equivalence [instance, in Coq.Classes.CRelationClasses]
iff_Transitive [instance, in Coq.Classes.CRelationClasses]
iff_Symmetric [instance, in Coq.Classes.CRelationClasses]
iff_Reflexive [instance, in Coq.Classes.CRelationClasses]
iff_setoid [instance, in Coq.Classes.SetoidClass]
iff_Reflexive [instance, in Coq.ssr.ssrclasses]
iff_iff_iff_impl_morphism [instance, in Coq.Classes.Morphisms_Prop]
iff_equivalence [instance, in Coq.Classes.RelationClasses]
iff_Transitive [instance, in Coq.Classes.RelationClasses]
iff_Symmetric [instance, in Coq.Classes.RelationClasses]
iff_Reflexive [instance, in Coq.Classes.RelationClasses]
iff_reflect [lemma, in Coq.Bool.Bool]
iff_flip_impl_subrelation [instance, in Coq.Classes.CMorphisms]
iff_impl_subrelation [instance, in Coq.Classes.CMorphisms]
IfindS [instance, in Coq.setoid_ring.Ncring_tac]
Ifind0 [instance, in Coq.setoid_ring.Ncring_tac]
ifN [lemma, in Coq.ssr.ssrbool]
IfNotations [module, in Coq.Init.Notations]
if _ is _ then _ else _ [notation, in Coq.Init.Notations]
ifP [lemma, in Coq.ssr.ssrbool]
ifPn [lemma, in Coq.ssr.ssrbool]
IFProp [definition, in Coq.Logic.Berardi]
IfProp [inductive, in Coq.Bool.IfProp]
IfProp [library]
IfProp_sum [lemma, in Coq.Bool.IfProp]
IfProp_or [lemma, in Coq.Bool.IfProp]
IfProp_false [lemma, in Coq.Bool.IfProp]
IfProp_true [lemma, in Coq.Bool.IfProp]
IfSpecFalse [constructor, in Coq.ssr.ssrbool]
IfSpecTrue [constructor, in Coq.ssr.ssrbool]
ifT [lemma, in Coq.ssr.ssrbool]
Iftrue [constructor, in Coq.Bool.IfProp]
Iftrue_inv [lemma, in Coq.Bool.IfProp]
IF_then_else [definition, in Coq.Init.Logic]
if_true [lemma, in Coq.setoid_ring.Field_theory]
if_expr [definition, in Coq.ssr.ssrbool]
if_arg [lemma, in Coq.ssr.ssrbool]
if_neg [lemma, in Coq.ssr.ssrbool]
if_same [lemma, in Coq.ssr.ssrbool]
if_spec [inductive, in Coq.ssr.ssrbool]
if_eqA_rewrite_r [lemma, in Coq.Sorting.PermutSetoid]
if_eqA_rewrite_l [lemma, in Coq.Sorting.PermutSetoid]
if_eqA [instance, in Coq.Sorting.PermutSetoid]
if_eqA_refl [lemma, in Coq.Sorting.PermutSetoid]
if_eqA_else [lemma, in Coq.Sorting.PermutSetoid]
if_eqA_then [lemma, in Coq.Sorting.PermutSetoid]
if_cnf_tt [lemma, in Coq.micromega.Tauto]
if_same [lemma, in Coq.micromega.Tauto]
if_negb [lemma, in Coq.Bool.Bool]
Im [inductive, in Coq.Sets.Image]
Image [section, in Coq.Sets.Image]
Image [library]
image_empty [lemma, in Coq.Sets.Image]
image_dir [definition, in Coq.Reals.Rtopology]
image_rec [definition, in Coq.Reals.Rtopology]
Image_set_continuous' [lemma, in Coq.Sets.Infinite_sets]
Image_set_continuous [lemma, in Coq.Sets.Infinite_sets]
Image.U [variable, in Coq.Sets.Image]
Image.V [variable, in Coq.Sets.Image]
imemo_get_correct [lemma, in Coq.Lists.StreamMemo]
imemo_list [definition, in Coq.Lists.StreamMemo]
imemo_make [definition, in Coq.Lists.StreamMemo]
impl [definition, in Coq.Program.Basics]
implb [definition, in Coq.Init.Datatypes]
Implies [constructor, in Coq.ssr.ssrbool]
implies [inductive, in Coq.ssr.ssrbool]
impliesP [lemma, in Coq.ssr.ssrbool]
impliesPn [lemma, in Coq.ssr.ssrbool]
implybb [lemma, in Coq.ssr.ssrbool]
implybE [lemma, in Coq.ssr.ssrbool]
implybF [lemma, in Coq.ssr.ssrbool]
implybN [lemma, in Coq.ssr.ssrbool]
implybNN [lemma, in Coq.ssr.ssrbool]
implybT [lemma, in Coq.ssr.ssrbool]
implyb_id2l [lemma, in Coq.ssr.ssrbool]
implyb_idr [lemma, in Coq.ssr.ssrbool]
implyb_idl [lemma, in Coq.ssr.ssrbool]
implyFb [lemma, in Coq.ssr.ssrbool]
implyNb [lemma, in Coq.ssr.ssrbool]
implyP [lemma, in Coq.ssr.ssrbool]
implyTb [lemma, in Coq.ssr.ssrbool]
imply_and_or2 [lemma, in Coq.Logic.Classical_Prop]
imply_and_or [lemma, in Coq.Logic.Classical_Prop]
imply_to_and [lemma, in Coq.Logic.Classical_Prop]
imply_to_or [lemma, in Coq.Logic.Classical_Prop]
impl_Transitive [instance, in Coq.Classes.CRelationClasses]
impl_Reflexive [instance, in Coq.Classes.CRelationClasses]
impl_Transitive [instance, in Coq.Classes.RelationClasses]
impl_Reflexive [instance, in Coq.Classes.RelationClasses]
impl_hprop [lemma, in Coq.Logic.HLevels]
imp_not_l [lemma, in Coq.Logic.Decidable]
imp_simp [lemma, in Coq.Logic.Decidable]
imp_iff_compat_r [lemma, in Coq.Init.Logic]
imp_iff_compat_l [lemma, in Coq.Init.Logic]
Im_inv [lemma, in Coq.Sets.Image]
Im_add [lemma, in Coq.Sets.Image]
Im_def [lemma, in Coq.Sets.Image]
Im_intro [constructor, in Coq.Sets.Image]
In [definition, in Coq.Reals.RList]
In [definition, in Coq.Sets.Uniset]
In [definition, in Coq.Numbers.Cyclic.Int31.Int31]
IN [module, in Coq.MSets.MSetInterface]
In [inductive, in Coq.Vectors.VectorDef]
In [definition, in Coq.Sets.Ensembles]
In [definition, in Coq.rtauto.Bintree]
In [definition, in Coq.Lists.List]
InA [inductive, in Coq.Lists.SetoidList]
InA_InfA [lemma, in Coq.Lists.SetoidList]
InA_dec [lemma, in Coq.Lists.SetoidList]
InA_app_idem [lemma, in Coq.Lists.SetoidList]
InA_permute_heads [lemma, in Coq.Lists.SetoidList]
InA_double_head [lemma, in Coq.Lists.SetoidList]
InA_singleton [lemma, in Coq.Lists.SetoidList]
InA_rev [lemma, in Coq.Lists.SetoidList]
InA_app_iff [lemma, in Coq.Lists.SetoidList]
InA_app [lemma, in Coq.Lists.SetoidList]
InA_split [lemma, in Coq.Lists.SetoidList]
InA_eqA [lemma, in Coq.Lists.SetoidList]
InA_compat [instance, in Coq.Lists.SetoidList]
InA_alt [lemma, in Coq.Lists.SetoidList]
InA_nil [lemma, in Coq.Lists.SetoidList]
InA_cons [lemma, in Coq.Lists.SetoidList]
InA_altdef [lemma, in Coq.Lists.SetoidList]
InA_cons_tl [constructor, in Coq.Lists.SetoidList]
InA_cons_hd [constructor, in Coq.Lists.SetoidList]
incl [definition, in Coq.Sets.Uniset]
incl [definition, in Coq.Lists.List]
inclA [definition, in Coq.Lists.SetoidList]
included [definition, in Coq.Reals.Rtopology]
Included [definition, in Coq.Sets.Ensembles]
Included_Strict_Included [lemma, in Coq.Sets.Classical_sets]
included_trans [lemma, in Coq.Reals.Rtopology]
Included_Empty [lemma, in Coq.Sets.Constructive_sets]
Included_Add [lemma, in Coq.Sets.Powerset_Classical_facts]
inclusion [definition, in Coq.Relations.Relation_Definitions]
Inclusion [library]
Inclusion_is_transitive [lemma, in Coq.Sets.Powerset]
Inclusion_is_an_order [lemma, in Coq.Sets.Powerset]
incl_right [lemma, in Coq.Sets.Uniset]
incl_left [lemma, in Coq.Sets.Uniset]
incl_card_le [lemma, in Coq.Sets.Finite_sets_facts]
incl_st_card_lt [lemma, in Coq.Sets.Finite_sets_facts]
incl_clos_trans [lemma, in Coq.Wellfounded.Transitive_Closure]
incl_dec [lemma, in Coq.Lists.ListDec]
incl_decidable [lemma, in Coq.Lists.ListDec]
incl_add_x [lemma, in Coq.Sets.Powerset_facts]
incl_add [lemma, in Coq.Sets.Powerset_facts]
incl_st_add_soustr [lemma, in Coq.Sets.Powerset_Classical_facts]
incl_soustr_add_r [lemma, in Coq.Sets.Powerset_Classical_facts]
incl_soustr_add_l [lemma, in Coq.Sets.Powerset_Classical_facts]
incl_soustr [lemma, in Coq.Sets.Powerset_Classical_facts]
incl_soustr_in [lemma, in Coq.Sets.Powerset_Classical_facts]
incl_Add_inv [lemma, in Coq.Lists.List]
incl_app [lemma, in Coq.Lists.List]
incl_cons [lemma, in Coq.Lists.List]
incl_appr [lemma, in Coq.Lists.List]
incl_appl [lemma, in Coq.Lists.List]
incl_tran [lemma, in Coq.Lists.List]
incl_tl [lemma, in Coq.Lists.List]
incl_refl [lemma, in Coq.Lists.List]
incl_nil [lemma, in Coq.Lists.SetoidList]
incr [definition, in Coq.Numbers.Cyclic.Int31.Int31]
incrbis_aux_equiv [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
incrbis_aux [definition, in Coq.Numbers.Cyclic.Int31.Cyclic31]
increase_seq_transit [lemma, in Coq.Reals.Runcountable]
increasing [definition, in Coq.Reals.Ranalysis1]
increasing_modulus_max [lemma, in Coq.Reals.ConstructiveCauchyReals]
increasing_modulus_inc [lemma, in Coq.Reals.ConstructiveCauchyReals]
increasing_modulus [definition, in Coq.Reals.ConstructiveCauchyReals]
increasing_decreasing [lemma, in Coq.Reals.MVT]
increasing_decreasing_opp [lemma, in Coq.Reals.MVT]
incr_inv [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
incr_firstr [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
incr_twice_plus_one [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
incr_twice_plus_one_firstl [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
incr_twice [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
incr_eqn2 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
incr_eqn1 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
ind [projection, in Coq.Reals.Rtopology]
IndefiniteDescription [library]
IndependenceOfGeneralPremises [definition, in Coq.Logic.ChoiceFacts]
IndependenceOfGeneralPremises [definition, in Coq.Logic.ClassicalFacts]
independence_general_premises_drinker [lemma, in Coq.Logic.ClassicalFacts]
independence_general_premises_Godel_Dummett [lemma, in Coq.Logic.ClassicalFacts]
independence_general_premises_right_distr_implication_over_disjunction [lemma, in Coq.Logic.ClassicalFacts]
index [definition, in Coq.Strings.String]
index [projection, in Coq.rtauto.Bintree]
index_correct4 [lemma, in Coq.Strings.String]
index_correct3 [lemma, in Coq.Strings.String]
index_correct2 [lemma, in Coq.Strings.String]
index_correct1 [lemma, in Coq.Strings.String]
induction_gtof2 [lemma, in Coq.Arith.Wf_nat]
induction_ltof2 [lemma, in Coq.Arith.Wf_nat]
induction_gtof1 [lemma, in Coq.Arith.Wf_nat]
induction_ltof1 [lemma, in Coq.Arith.Wf_nat]
inductively_barred_at_is_path_from_decidable [lemma, in Coq.Logic.WKL]
inductively_barred_at_decidable [lemma, in Coq.Logic.WKL]
inductively_barred_at_imp_is_path_from [lemma, in Coq.Logic.WKL]
inductively_barred_at_monotone [lemma, in Coq.Logic.WKL]
inductively_barred_at [inductive, in Coq.Logic.WKL]
inductively_barred [inductive, in Coq.Logic.WeakFan]
ind_0_1_SS [lemma, in Coq.Arith.Div2]
inE [definition, in Coq.ssr.ssrbool]
InfA [abbreviation, in Coq.Lists.SetoidList]
InfA_app [lemma, in Coq.Lists.SetoidList]
InfA_alt [lemma, in Coq.Lists.SetoidList]
InfA_eqA [lemma, in Coq.Lists.SetoidList]
InfA_compat [instance, in Coq.Lists.SetoidList]
InfA_ltA [lemma, in Coq.Lists.SetoidList]
infinite_from [definition, in Coq.Logic.WKL]
infinite_sum [definition, in Coq.Reals.Rfunctions]
Infinite_sets.V [variable, in Coq.Sets.Infinite_sets]
Infinite_sets.U [variable, in Coq.Sets.Infinite_sets]
Infinite_sets [section, in Coq.Sets.Infinite_sets]
Infinite_sets [library]
infinity [definition, in Coq.Floats.PrimFloat]
infinit_sum [abbreviation, in Coq.Reals.Rfunctions]
InfoTyp [module, in Coq.MSets.MSetGenTree]
InfoTyp.t [axiom, in Coq.MSets.MSetGenTree]
infty [constructor, in Coq.NArith.Ndist]
inhabited [abbreviation, in Coq.Logic.Diaconescu]
inhabited [inductive, in Coq.Init.Logic]
inhabited [abbreviation, in Coq.Logic.ClassicalFacts]
Inhabited [inductive, in Coq.Sets.Ensembles]
inhabited [abbreviation, in Coq.Logic.ClassicalDescription]
InhabitedForallCommute [abbreviation, in Coq.Logic.ChoiceFacts]
InhabitedForallCommute_on [definition, in Coq.Logic.ChoiceFacts]
inhabited_forall_commute_to_functional_choice [lemma, in Coq.Logic.ChoiceFacts]
inhabited_covariant [lemma, in Coq.Init.Logic]
Inhabited_Setminus [lemma, in Coq.Sets.Classical_sets]
inhabited_sig_to_exists [lemma, in Coq.Init.Specif]
Inhabited_not_empty [lemma, in Coq.Sets.Constructive_sets]
Inhabited_add [lemma, in Coq.Sets.Constructive_sets]
Inhabited_intro [constructor, in Coq.Sets.Ensembles]
inhabits [constructor, in Coq.Init.Logic]
inh_card_gt_O [lemma, in Coq.Sets.Finite_sets_facts]
Init [library]
InitialMorphism [section, in Coq.micromega.ZCoeff]
InitialMorphism.R [variable, in Coq.micromega.ZCoeff]
InitialMorphism.req [variable, in Coq.micromega.ZCoeff]
InitialMorphism.rI [variable, in Coq.micromega.ZCoeff]
InitialMorphism.rle [variable, in Coq.micromega.ZCoeff]
InitialMorphism.rlt [variable, in Coq.micromega.ZCoeff]
InitialMorphism.rminus [variable, in Coq.micromega.ZCoeff]
InitialMorphism.rO [variable, in Coq.micromega.ZCoeff]
InitialMorphism.ropp [variable, in Coq.micromega.ZCoeff]
InitialMorphism.rplus [variable, in Coq.micromega.ZCoeff]
InitialMorphism.rtimes [variable, in Coq.micromega.ZCoeff]
InitialMorphism.sor [variable, in Coq.micromega.ZCoeff]
_ < _ [notation, in Coq.micromega.ZCoeff]
_ <= _ [notation, in Coq.micromega.ZCoeff]
_ ~= _ [notation, in Coq.micromega.ZCoeff]
_ == _ [notation, in Coq.micromega.ZCoeff]
_ - _ [notation, in Coq.micromega.ZCoeff]
_ * _ [notation, in Coq.micromega.ZCoeff]
_ + _ [notation, in Coq.micromega.ZCoeff]
- _ [notation, in Coq.micromega.ZCoeff]
0 [notation, in Coq.micromega.ZCoeff]
1 [notation, in Coq.micromega.ZCoeff]
[ _ ] [notation, in Coq.micromega.ZCoeff]
InitialRing [library]
inj [projection, in Coq.micromega.ZifyClasses]
Injections [section, in Coq.ssr.ssrfun]
InjectionsTheory [section, in Coq.ssr.ssrfun]
InjectionsTheory.A [variable, in Coq.ssr.ssrfun]
InjectionsTheory.B [variable, in Coq.ssr.ssrfun]
InjectionsTheory.C [variable, in Coq.ssr.ssrfun]
InjectionsTheory.f [variable, in Coq.ssr.ssrfun]
InjectionsTheory.g [variable, in Coq.ssr.ssrfun]
InjectionsTheory.h [variable, in Coq.ssr.ssrfun]
Injections.aT [variable, in Coq.ssr.ssrfun]
Injections.f [variable, in Coq.ssr.ssrfun]
Injections.rT [variable, in Coq.ssr.ssrfun]
injection_is_involution_in_Prop [lemma, in Coq.Logic.PropFacts]
injective [definition, in Coq.Sets.Image]
injective [definition, in Coq.ssr.ssrfun]
Injective [definition, in Coq.Logic.FinFun]
injective_preserves_cardinal [lemma, in Coq.Sets.Image]
injective_projections [lemma, in Coq.Init.Datatypes]
Injective_Surjective_Bijective [lemma, in Coq.Logic.FinFun]
Injective_carac [lemma, in Coq.Logic.FinFun]
Injective_list_carac [lemma, in Coq.Logic.FinFun]
Injective_map_NoDup [lemma, in Coq.Logic.FinFun]
inject_Z_plus [lemma, in Coq.Reals.ConstructiveCauchyReals]
inject_Q_le [lemma, in Coq.Reals.ConstructiveCauchyReals]
inject_Q_lt [lemma, in Coq.Reals.ConstructiveCauchyReals]
inject_Q_one [lemma, in Coq.Reals.ConstructiveCauchyReals]
inject_Q_plus [lemma, in Coq.Reals.ConstructiveCauchyReals]
inject_Q_morph_T [instance, in Coq.Reals.ConstructiveCauchyReals]
inject_Q_compare [lemma, in Coq.Reals.ConstructiveCauchyReals]
inject_Z [definition, in Coq.Reals.ConstructiveCauchyReals]
inject_Q [definition, in Coq.Reals.ConstructiveCauchyReals]
inject_Z_opp [lemma, in Coq.QArith.QArith_base]
inject_Z_mult [lemma, in Coq.QArith.QArith_base]
inject_Z_plus [lemma, in Coq.QArith.QArith_base]
inject_Z_injective [lemma, in Coq.QArith.QArith_base]
inject_Z [definition, in Coq.QArith.QArith_base]
inject_Q_mult [lemma, in Coq.Reals.ConstructiveCauchyRealsMult]
injprop [record, in Coq.micromega.ZifyClasses]
injprop_ok [projection, in Coq.micromega.ZifyClasses]
injterm [record, in Coq.micromega.ZifyClasses]
InjTyp [record, in Coq.micromega.ZifyClasses]
inj_minus2 [lemma, in Coq.ZArith.Znat]
inj_max [abbreviation, in Coq.ZArith.Znat]
inj_min [abbreviation, in Coq.ZArith.Znat]
inj_minus [abbreviation, in Coq.ZArith.Znat]
inj_minus1 [abbreviation, in Coq.ZArith.Znat]
inj_mult [abbreviation, in Coq.ZArith.Znat]
inj_plus [abbreviation, in Coq.ZArith.Znat]
inj_gt_rev [abbreviation, in Coq.ZArith.Znat]
inj_ge_rev [abbreviation, in Coq.ZArith.Znat]
inj_lt_rev [abbreviation, in Coq.ZArith.Znat]
inj_le_rev [abbreviation, in Coq.ZArith.Znat]
inj_gt_iff [abbreviation, in Coq.ZArith.Znat]
inj_ge_iff [abbreviation, in Coq.ZArith.Znat]
inj_lt_iff [abbreviation, in Coq.ZArith.Znat]
inj_le_iff [abbreviation, in Coq.ZArith.Znat]
inj_eq_iff [abbreviation, in Coq.ZArith.Znat]
inj_eq_rev [abbreviation, in Coq.ZArith.Znat]
inj_compare [abbreviation, in Coq.ZArith.Znat]
inj_S [abbreviation, in Coq.ZArith.Znat]
inj_0 [abbreviation, in Coq.ZArith.Znat]
inj_gt [definition, in Coq.ZArith.Znat]
inj_ge [definition, in Coq.ZArith.Znat]
inj_lt [definition, in Coq.ZArith.Znat]
inj_le [definition, in Coq.ZArith.Znat]
inj_eq [definition, in Coq.ZArith.Znat]
inj_neq [lemma, in Coq.ZArith.Znat]
inj_pair2_eq_dec [lemma, in Coq.Logic.Eqdep_dec]
inj_right_pair [lemma, in Coq.Logic.Eqdep_dec]
inj_right_pair_on [lemma, in Coq.Logic.Eqdep_dec]
Inj_bool_Z [instance, in Coq.micromega.ZifyBool]
Inj_N_Z [instance, in Coq.micromega.ZifyInst]
Inj_pos_Z [instance, in Coq.micromega.ZifyInst]
Inj_nat_Z [instance, in Coq.micromega.ZifyInst]
Inj_Z_Z [instance, in Coq.micromega.ZifyInst]
Inj_comparison_Z [instance, in Coq.micromega.ZifyComparison]
inj_ok [projection, in Coq.micromega.ZifyClasses]
inj_can_eq [lemma, in Coq.ssr.ssrfun]
inj_compr [lemma, in Coq.ssr.ssrfun]
inj_comp [lemma, in Coq.ssr.ssrfun]
inj_can_sym [lemma, in Coq.ssr.ssrfun]
inj_id [lemma, in Coq.ssr.ssrfun]
Inj_dep_pairT [abbreviation, in Coq.Logic.EqdepFacts]
Inj_dep_pairS [abbreviation, in Coq.Logic.EqdepFacts]
Inj_dep_pair [definition, in Coq.Logic.EqdepFacts]
Inj_dep_pair_on [definition, in Coq.Logic.EqdepFacts]
inj_Zabs_nat [abbreviation, in Coq.ZArith.Zabs]
inj_pairT2_refl [lemma, in Coq.Program.Equality]
inl [constructor, in Coq.Init.Datatypes]
inleft [constructor, in Coq.Init.Specif]
inPhantom [definition, in Coq.ssr.ssrbool]
INR [definition, in Coq.Reals.Raxioms]
inr [constructor, in Coq.Init.Datatypes]
inright [constructor, in Coq.Init.Specif]
INR_fact_lt_0 [lemma, in Coq.Reals.Rprod]
INR_pos [abbreviation, in Coq.Reals.RIneq]
INR_lt_1 [abbreviation, in Coq.Reals.RIneq]
INR_IZR_INZ [lemma, in Coq.Reals.RIneq]
INR_IPR [lemma, in Coq.Reals.RIneq]
INR_le [lemma, in Coq.Reals.RIneq]
INR_eq [lemma, in Coq.Reals.RIneq]
INR_not_0 [lemma, in Coq.Reals.RIneq]
INR_lt [lemma, in Coq.Reals.RIneq]
INR_fact_neq_0 [lemma, in Coq.Reals.Rfunctions]
insert [definition, in Coq.Reals.RList]
insert [lemma, in Coq.Sorting.Heap]
insert_exist [constructor, in Coq.Sorting.Heap]
insert_spec [inductive, in Coq.Sorting.Heap]
inser_trans_R [lemma, in Coq.Reals.RIneq]
inst [lemma, in Coq.Init.Logic]
int [axiom, in Coq.Numbers.Cyclic.Int63.Int63]
int [inductive, in Coq.Init.Decimal]
int [axiom, in Coq.extraction.ExtrOcamlIntConv]
Int [module, in Coq.ZArith.Int]
Int [library]
Integers [inductive, in Coq.Sets.Integers]
Integers [library]
Integers_infinite [lemma, in Coq.Sets.Integers]
Integers_has_no_ub [lemma, in Coq.Sets.Integers]
Integers_defn [constructor, in Coq.Sets.Integers]
Integers_sect [section, in Coq.Sets.Integers]
integral_domain_minus_one_zero [lemma, in Coq.setoid_ring.Integral_domain]
integral_domain [section, in Coq.setoid_ring.Integral_domain]
integral_domain_one_zero [projection, in Coq.setoid_ring.Integral_domain]
integral_domain_product [projection, in Coq.setoid_ring.Integral_domain]
Integral_domain [record, in Coq.setoid_ring.Integral_domain]
Integral_domain [library]
Integration [library]
interchange [definition, in Coq.ssr.ssrfun]
interior [definition, in Coq.Reals.Rtopology]
interior_P3 [lemma, in Coq.Reals.Rtopology]
interior_P2 [lemma, in Coq.Reals.Rtopology]
interior_P1 [lemma, in Coq.Reals.Rtopology]
interpret3 [definition, in Coq.nsatz.Nsatz]
interp_carry [definition, in Coq.Numbers.Cyclic.Abstract.DoubleType]
interp_PElist [definition, in Coq.setoid_ring.Ncring_polynom]
interp_PElist_ok [lemma, in Coq.setoid_ring.Ring_polynom]
interp_PElist [definition, in Coq.setoid_ring.Ring_polynom]
interp_proof [lemma, in Coq.rtauto.Rtauto]
interp_ctx [definition, in Coq.rtauto.Rtauto]
interp_form [definition, in Coq.rtauto.Rtauto]
Intersection [inductive, in Coq.Sets.Ensembles]
intersection_vide_finite_in [definition, in Coq.Reals.Rtopology]
intersection_vide_in [definition, in Coq.Reals.Rtopology]
intersection_family [definition, in Coq.Reals.Rtopology]
intersection_domain [definition, in Coq.Reals.Rtopology]
Intersection_preserves_finite [lemma, in Coq.Sets.Finite_sets_facts]
Intersection_inv [lemma, in Coq.Sets.Constructive_sets]
Intersection_intro [constructor, in Coq.Sets.Ensembles]
Intersection_Empty_set_r [lemma, in Coq.Sets.Powerset_facts]
Intersection_Empty_set_l [lemma, in Coq.Sets.Powerset_facts]
Intersection_commutative [lemma, in Coq.Sets.Powerset_facts]
Intersection_is_Glb [lemma, in Coq.Sets.Powerset]
Intersection_decreases_r [lemma, in Coq.Sets.Powerset]
Intersection_decreases_l [lemma, in Coq.Sets.Powerset]
Intersection_maximal [lemma, in Coq.Sets.Powerset]
IntMake [module, in Coq.FSets.FMapFullAVL]
IntMake [module, in Coq.MSets.MSetAVL]
IntMake [module, in Coq.FSets.FMapAVL]
IntMake [module, in Coq.FSets.FSetAVL]
IntMake_ord.lt_not_eq [lemma, in Coq.FSets.FMapFullAVL]
IntMake_ord.lt_trans [lemma, in Coq.FSets.FMapFullAVL]
IntMake_ord.eq_trans [lemma, in Coq.FSets.FMapFullAVL]
IntMake_ord.eq_sym [lemma, in Coq.FSets.FMapFullAVL]
IntMake_ord.eq_refl [lemma, in Coq.FSets.FMapFullAVL]
IntMake_ord.eq_2 [lemma, in Coq.FSets.FMapFullAVL]
IntMake_ord.eq_1 [lemma, in Coq.FSets.FMapFullAVL]
IntMake_ord.lt_slt [lemma, in Coq.FSets.FMapFullAVL]
IntMake_ord.eq_seq [lemma, in Coq.FSets.FMapFullAVL]
IntMake_ord.slt [definition, in Coq.FSets.FMapFullAVL]
IntMake_ord.seq [definition, in Coq.FSets.FMapFullAVL]
IntMake_ord.selements [definition, in Coq.FSets.FMapFullAVL]
IntMake_ord.compare [definition, in Coq.FSets.FMapFullAVL]
IntMake_ord.lt [definition, in Coq.FSets.FMapFullAVL]
IntMake_ord.eq [definition, in Coq.FSets.FMapFullAVL]
IntMake_ord.compare_Cmp [lemma, in Coq.FSets.FMapFullAVL]
IntMake_ord.compare_aux_Cmp [lemma, in Coq.FSets.FMapFullAVL]
IntMake_ord.cons_Cmp [lemma, in Coq.FSets.FMapFullAVL]
IntMake_ord.Cmp [definition, in Coq.FSets.FMapFullAVL]
IntMake_ord.cardinal_e_2 [definition, in Coq.FSets.FMapFullAVL]
IntMake_ord.cons_cardinal_e [lemma, in Coq.FSets.FMapFullAVL]
IntMake_ord.cardinal_e [definition, in Coq.FSets.FMapFullAVL]
IntMake_ord.elements [definition, in Coq.FSets.FMapFullAVL]
IntMake_ord.cmp [definition, in Coq.FSets.FMapFullAVL]
IntMake_ord.t [definition, in Coq.FSets.FMapFullAVL]
IntMake_ord.LO [module, in Coq.FSets.FMapFullAVL]
IntMake_ord.MD [module, in Coq.FSets.FMapFullAVL]
IntMake_ord.MapS [module, in Coq.FSets.FMapFullAVL]
IntMake_ord.Data [module, in Coq.FSets.FMapFullAVL]
IntMake_ord [module, in Coq.FSets.FMapFullAVL]
IntMake_ord.lt_not_eq [lemma, in Coq.FSets.FMapAVL]
IntMake_ord.lt_trans [lemma, in Coq.FSets.FMapAVL]
IntMake_ord.eq_trans [lemma, in Coq.FSets.FMapAVL]
IntMake_ord.eq_sym [lemma, in Coq.FSets.FMapAVL]
IntMake_ord.eq_refl [lemma, in Coq.FSets.FMapAVL]
IntMake_ord.eq_2 [lemma, in Coq.FSets.FMapAVL]
IntMake_ord.eq_1 [lemma, in Coq.FSets.FMapAVL]
IntMake_ord.lt_slt [lemma, in Coq.FSets.FMapAVL]
IntMake_ord.eq_seq [lemma, in Coq.FSets.FMapAVL]
IntMake_ord.slt [definition, in Coq.FSets.FMapAVL]
IntMake_ord.seq [definition, in Coq.FSets.FMapAVL]
IntMake_ord.selements [definition, in Coq.FSets.FMapAVL]
IntMake_ord.compare [definition, in Coq.FSets.FMapAVL]
IntMake_ord.lt [definition, in Coq.FSets.FMapAVL]
IntMake_ord.eq [definition, in Coq.FSets.FMapAVL]
IntMake_ord.compare_Cmp [lemma, in Coq.FSets.FMapAVL]
IntMake_ord.compare_cont_Cmp [lemma, in Coq.FSets.FMapAVL]
IntMake_ord.compare_more_Cmp [lemma, in Coq.FSets.FMapAVL]
IntMake_ord.compare_end_Cmp [lemma, in Coq.FSets.FMapAVL]
IntMake_ord.cons_Cmp [lemma, in Coq.FSets.FMapAVL]
IntMake_ord.Cmp [definition, in Coq.FSets.FMapAVL]
IntMake_ord.compare_pure [definition, in Coq.FSets.FMapAVL]
IntMake_ord.compare_end [definition, in Coq.FSets.FMapAVL]
IntMake_ord.compare_cont [definition, in Coq.FSets.FMapAVL]
IntMake_ord.compare_more [definition, in Coq.FSets.FMapAVL]
IntMake_ord.cmp [definition, in Coq.FSets.FMapAVL]
IntMake_ord.t [definition, in Coq.FSets.FMapAVL]
IntMake_ord.P [module, in Coq.FSets.FMapAVL]
IntMake_ord.R [module, in Coq.FSets.FMapAVL]
IntMake_ord.LO [module, in Coq.FSets.FMapAVL]
IntMake_ord.MapS [module, in Coq.FSets.FMapAVL]
IntMake_ord.Data [module, in Coq.FSets.FMapAVL]
IntMake_ord [module, in Coq.FSets.FMapAVL]
IntMake.add [definition, in Coq.FSets.FMapFullAVL]
IntMake.add [definition, in Coq.FSets.FMapAVL]
IntMake.add_3 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.add_2 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.add_1 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.add_3 [lemma, in Coq.FSets.FMapAVL]
IntMake.add_2 [lemma, in Coq.FSets.FMapAVL]
IntMake.add_1 [lemma, in Coq.FSets.FMapAVL]
IntMake.AvlProofs [module, in Coq.FSets.FMapFullAVL]
IntMake.bbst [record, in Coq.FSets.FMapFullAVL]
IntMake.Bbst [constructor, in Coq.FSets.FMapFullAVL]
IntMake.bst [record, in Coq.FSets.FMapAVL]
IntMake.Bst [constructor, in Coq.FSets.FMapAVL]
IntMake.cardinal [definition, in Coq.FSets.FMapFullAVL]
IntMake.cardinal [definition, in Coq.FSets.FMapAVL]
IntMake.cardinal_1 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.cardinal_1 [lemma, in Coq.FSets.FMapAVL]
IntMake.E [module, in Coq.FSets.FMapFullAVL]
IntMake.E [module, in Coq.FSets.FMapAVL]
IntMake.elements [definition, in Coq.FSets.FMapFullAVL]
IntMake.elements [definition, in Coq.FSets.FMapAVL]
IntMake.elements_3w [lemma, in Coq.FSets.FMapFullAVL]
IntMake.elements_3 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.elements_2 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.elements_1 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.elements_3w [lemma, in Coq.FSets.FMapAVL]
IntMake.elements_3 [lemma, in Coq.FSets.FMapAVL]
IntMake.elements_2 [lemma, in Coq.FSets.FMapAVL]
IntMake.elements_1 [lemma, in Coq.FSets.FMapAVL]
IntMake.Elt [section, in Coq.FSets.FMapFullAVL]
IntMake.Elt [section, in Coq.FSets.FMapAVL]
IntMake.Elt.elt [variable, in Coq.FSets.FMapFullAVL]
IntMake.Elt.elt [variable, in Coq.FSets.FMapAVL]
IntMake.Elt.elt' [variable, in Coq.FSets.FMapFullAVL]
IntMake.Elt.elt' [variable, in Coq.FSets.FMapAVL]
IntMake.Elt.elt'' [variable, in Coq.FSets.FMapFullAVL]
IntMake.Elt.elt'' [variable, in Coq.FSets.FMapAVL]
IntMake.Empty [definition, in Coq.FSets.FMapFullAVL]
IntMake.empty [definition, in Coq.FSets.FMapFullAVL]
IntMake.Empty [definition, in Coq.FSets.FMapAVL]
IntMake.empty [definition, in Coq.FSets.FMapAVL]
IntMake.empty_1 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.empty_1 [lemma, in Coq.FSets.FMapAVL]
IntMake.Equal [definition, in Coq.FSets.FMapFullAVL]
IntMake.equal [definition, in Coq.FSets.FMapFullAVL]
IntMake.Equal [definition, in Coq.FSets.FMapAVL]
IntMake.equal [definition, in Coq.FSets.FMapAVL]
IntMake.equal_2 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.equal_1 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.equal_2 [lemma, in Coq.FSets.FMapAVL]
IntMake.equal_1 [lemma, in Coq.FSets.FMapAVL]
IntMake.Equiv [definition, in Coq.FSets.FMapFullAVL]
IntMake.Equiv [definition, in Coq.FSets.FMapAVL]
IntMake.Equivb [definition, in Coq.FSets.FMapFullAVL]
IntMake.Equivb [definition, in Coq.FSets.FMapAVL]
IntMake.Equivb_Equivb [lemma, in Coq.FSets.FMapFullAVL]
IntMake.Equivb_Equivb [lemma, in Coq.FSets.FMapAVL]
IntMake.eq_key_elt [definition, in Coq.FSets.FMapFullAVL]
IntMake.eq_key [definition, in Coq.FSets.FMapFullAVL]
IntMake.eq_key_elt [definition, in Coq.FSets.FMapAVL]
IntMake.eq_key [definition, in Coq.FSets.FMapAVL]
IntMake.find [definition, in Coq.FSets.FMapFullAVL]
IntMake.find [definition, in Coq.FSets.FMapAVL]
IntMake.find_2 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.find_1 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.find_2 [lemma, in Coq.FSets.FMapAVL]
IntMake.find_1 [lemma, in Coq.FSets.FMapAVL]
IntMake.fold [definition, in Coq.FSets.FMapFullAVL]
IntMake.fold [definition, in Coq.FSets.FMapAVL]
IntMake.fold_1 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.fold_1 [lemma, in Coq.FSets.FMapAVL]
IntMake.In [definition, in Coq.FSets.FMapFullAVL]
IntMake.In [definition, in Coq.FSets.FMapAVL]
IntMake.is_empty_2 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.is_empty_1 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.is_empty [definition, in Coq.FSets.FMapFullAVL]
IntMake.is_avl [projection, in Coq.FSets.FMapFullAVL]
IntMake.is_bst [projection, in Coq.FSets.FMapFullAVL]
IntMake.is_empty_2 [lemma, in Coq.FSets.FMapAVL]
IntMake.is_empty_1 [lemma, in Coq.FSets.FMapAVL]
IntMake.is_empty [definition, in Coq.FSets.FMapAVL]
IntMake.is_bst [projection, in Coq.FSets.FMapAVL]
IntMake.key [definition, in Coq.FSets.FMapFullAVL]
IntMake.key [definition, in Coq.FSets.FMapAVL]
IntMake.lt_key [definition, in Coq.FSets.FMapFullAVL]
IntMake.lt_key [definition, in Coq.FSets.FMapAVL]
IntMake.map [definition, in Coq.FSets.FMapFullAVL]
IntMake.map [definition, in Coq.FSets.FMapAVL]
IntMake.mapi [definition, in Coq.FSets.FMapFullAVL]
IntMake.mapi [definition, in Coq.FSets.FMapAVL]
IntMake.mapi_2 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.mapi_1 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.mapi_2 [lemma, in Coq.FSets.FMapAVL]
IntMake.mapi_1 [lemma, in Coq.FSets.FMapAVL]
IntMake.MapsTo [definition, in Coq.FSets.FMapFullAVL]
IntMake.MapsTo [definition, in Coq.FSets.FMapAVL]
IntMake.MapsTo_1 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.MapsTo_1 [lemma, in Coq.FSets.FMapAVL]
IntMake.map_2 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.map_1 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.map_2 [lemma, in Coq.FSets.FMapAVL]
IntMake.map_1 [lemma, in Coq.FSets.FMapAVL]
IntMake.map2 [definition, in Coq.FSets.FMapFullAVL]
IntMake.map2 [definition, in Coq.FSets.FMapAVL]
IntMake.map2_2 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.map2_1 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.map2_2 [lemma, in Coq.FSets.FMapAVL]
IntMake.map2_1 [lemma, in Coq.FSets.FMapAVL]
IntMake.mem [definition, in Coq.FSets.FMapFullAVL]
IntMake.mem [definition, in Coq.FSets.FMapAVL]
IntMake.mem_2 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.mem_1 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.mem_2 [lemma, in Coq.FSets.FMapAVL]
IntMake.mem_1 [lemma, in Coq.FSets.FMapAVL]
IntMake.MSet [module, in Coq.FSets.FSetAVL]
IntMake.Raw [module, in Coq.MSets.MSetAVL]
IntMake.Raw [module, in Coq.FSets.FMapAVL]
IntMake.remove [definition, in Coq.FSets.FMapFullAVL]
IntMake.remove [definition, in Coq.FSets.FMapAVL]
IntMake.remove_3 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.remove_2 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.remove_1 [lemma, in Coq.FSets.FMapFullAVL]
IntMake.remove_3 [lemma, in Coq.FSets.FMapAVL]
IntMake.remove_2 [lemma, in Coq.FSets.FMapAVL]
IntMake.remove_1 [lemma, in Coq.FSets.FMapAVL]
IntMake.t [definition, in Coq.FSets.FMapFullAVL]
IntMake.t [definition, in Coq.FSets.FMapAVL]
IntMake.this [projection, in Coq.FSets.FMapFullAVL]
IntMake.this [projection, in Coq.FSets.FMapAVL]
IntMake.X' [module, in Coq.FSets.FSetAVL]
intP [lemma, in Coq.Reals.Rfunctions]
introF [lemma, in Coq.ssr.ssrbool]
introFn [lemma, in Coq.ssr.ssrbool]
introN [lemma, in Coq.ssr.ssrbool]
introNf [lemma, in Coq.ssr.ssrbool]
introNTF [lemma, in Coq.ssr.ssrbool]
introP [lemma, in Coq.ssr.ssrbool]
introT [lemma, in Coq.ssr.ssrbool]
introTF [lemma, in Coq.ssr.ssrbool]
introTFn [lemma, in Coq.ssr.ssrbool]
introTn [lemma, in Coq.ssr.ssrbool]
intro_Z [lemma, in Coq.omega.OmegaLemmas]
int_eqm [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
inT_bij [lemma, in Coq.ssr.ssrbool]
int_of_int [definition, in Coq.Init.Decimal]
Int_part_INR [lemma, in Coq.Reals.R_Ifp]
Int_part [definition, in Coq.Reals.R_Ifp]
Int_SF [definition, in Coq.Reals.RiemannInt_SF]
int_specs [instance, in Coq.Numbers.Cyclic.Int63.Cyclic63]
int_ops [instance, in Coq.Numbers.Cyclic.Int63.Cyclic63]
int_zlike_case [axiom, in Coq.extraction.ExtrOcamlIntConv]
int_poslike_rec [axiom, in Coq.extraction.ExtrOcamlIntConv]
int_natlike_rec [axiom, in Coq.extraction.ExtrOcamlIntConv]
int_of_n [definition, in Coq.extraction.ExtrOcamlIntConv]
int_of_z [definition, in Coq.extraction.ExtrOcamlIntConv]
int_of_pos [definition, in Coq.extraction.ExtrOcamlIntConv]
int_of_nat [definition, in Coq.extraction.ExtrOcamlIntConv]
int_twice [axiom, in Coq.extraction.ExtrOcamlIntConv]
int_opp [axiom, in Coq.extraction.ExtrOcamlIntConv]
int_succ [axiom, in Coq.extraction.ExtrOcamlIntConv]
int_zero [axiom, in Coq.extraction.ExtrOcamlIntConv]
Int.add [axiom, in Coq.ZArith.Int]
Int.eqb [axiom, in Coq.ZArith.Int]
Int.eq_dec [axiom, in Coq.ZArith.Int]
Int.ge_lt_dec [axiom, in Coq.ZArith.Int]
Int.gt_le_dec [axiom, in Coq.ZArith.Int]
Int.i2z [axiom, in Coq.ZArith.Int]
Int.i2z_leb [axiom, in Coq.ZArith.Int]
Int.i2z_ltb [axiom, in Coq.ZArith.Int]
Int.i2z_eqb [axiom, in Coq.ZArith.Int]
Int.i2z_max [axiom, in Coq.ZArith.Int]
Int.i2z_mul [axiom, in Coq.ZArith.Int]
Int.i2z_sub [axiom, in Coq.ZArith.Int]
Int.i2z_opp [axiom, in Coq.ZArith.Int]
Int.i2z_add [axiom, in Coq.ZArith.Int]
Int.i2z_3 [axiom, in Coq.ZArith.Int]
Int.i2z_2 [axiom, in Coq.ZArith.Int]
Int.i2z_1 [axiom, in Coq.ZArith.Int]
Int.i2z_0 [axiom, in Coq.ZArith.Int]
Int.i2z_eq [axiom, in Coq.ZArith.Int]
Int.leb [axiom, in Coq.ZArith.Int]
Int.ltb [axiom, in Coq.ZArith.Int]
Int.max [axiom, in Coq.ZArith.Int]
Int.mul [axiom, in Coq.ZArith.Int]
Int.opp [axiom, in Coq.ZArith.Int]
Int.sub [axiom, in Coq.ZArith.Int]
Int.t [axiom, in Coq.ZArith.Int]
Int._3 [axiom, in Coq.ZArith.Int]
Int._2 [axiom, in Coq.ZArith.Int]
Int._1 [axiom, in Coq.ZArith.Int]
Int._0 [axiom, in Coq.ZArith.Int]
_ < _ <= _ (Int_scope) [notation, in Coq.ZArith.Int]
_ < _ < _ (Int_scope) [notation, in Coq.ZArith.Int]
_ <= _ < _ (Int_scope) [notation, in Coq.ZArith.Int]
_ <= _ <= _ (Int_scope) [notation, in Coq.ZArith.Int]
_ > _ (Int_scope) [notation, in Coq.ZArith.Int]
_ >= _ (Int_scope) [notation, in Coq.ZArith.Int]
_ < _ (Int_scope) [notation, in Coq.ZArith.Int]
_ <= _ (Int_scope) [notation, in Coq.ZArith.Int]
_ == _ (Int_scope) [notation, in Coq.ZArith.Int]
- _ (Int_scope) [notation, in Coq.ZArith.Int]
_ * _ (Int_scope) [notation, in Coq.ZArith.Int]
_ - _ (Int_scope) [notation, in Coq.ZArith.Int]
_ + _ (Int_scope) [notation, in Coq.ZArith.Int]
3 (Int_scope) [notation, in Coq.ZArith.Int]
2 (Int_scope) [notation, in Coq.ZArith.Int]
1 (Int_scope) [notation, in Coq.ZArith.Int]
0 (Int_scope) [notation, in Coq.ZArith.Int]
_ <=? _ [notation, in Coq.ZArith.Int]
_ _ [notation, in Coq.ZArith.Int]
_ =? _ [notation, in Coq.ZArith.Int]
int31 [inductive, in Coq.Numbers.Cyclic.Int31.Int31]
Int31 [library]
Int31Cyclic [module, in Coq.Numbers.Cyclic.Int31.Cyclic31]
Int31Cyclic.ops [definition, in Coq.Numbers.Cyclic.Int31.Cyclic31]
Int31Cyclic.specs [definition, in Coq.Numbers.Cyclic.Int31.Cyclic31]
Int31Cyclic.t [definition, in Coq.Numbers.Cyclic.Int31.Cyclic31]
Int31Ring [lemma, in Coq.Numbers.Cyclic.Int31.Ring31]
Int31ring [module, in Coq.Numbers.Cyclic.Int31.Ring31]
int31_specs [instance, in Coq.Numbers.Cyclic.Int31.Cyclic31]
[|| _ ||] [notation, in Coq.Numbers.Cyclic.Int31.Cyclic31]
[-| _ |] [notation, in Coq.Numbers.Cyclic.Int31.Cyclic31]
[+| _ |] [notation, in Coq.Numbers.Cyclic.Int31.Cyclic31]
[| _ |] [notation, in Coq.Numbers.Cyclic.Int31.Cyclic31]
Int31_Specs [section, in Coq.Numbers.Cyclic.Int31.Cyclic31]
int31_ops [instance, in Coq.Numbers.Cyclic.Int31.Cyclic31]
int31_ind_twice [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
int31_ind_sneakl [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
int31_rect [definition, in Coq.Numbers.Cyclic.Int31.Int31]
int31_rec [definition, in Coq.Numbers.Cyclic.Int31.Int31]
int31_ind [definition, in Coq.Numbers.Cyclic.Int31.Int31]
Int31_canonic [lemma, in Coq.Numbers.Cyclic.Int31.Ring31]
Int63 [library]
Int63Cyclic [module, in Coq.Numbers.Cyclic.Int63.Cyclic63]
Int63Cyclic.ops [definition, in Coq.Numbers.Cyclic.Int63.Cyclic63]
Int63Cyclic.specs [definition, in Coq.Numbers.Cyclic.Int63.Cyclic63]
Int63Cyclic.t [definition, in Coq.Numbers.Cyclic.Int63.Cyclic63]
Int63Ring [lemma, in Coq.Numbers.Cyclic.Int63.Ring63]
Int63ring [module, in Coq.Numbers.Cyclic.Int63.Ring63]
Int63_canonic [lemma, in Coq.Numbers.Cyclic.Int63.Ring63]
inv [projection, in Coq.Logic.Berardi]
Inverse [module, in Coq.Numbers.Natural.Abstract.NIso]
Inverse_Image.RoF [variable, in Coq.Wellfounded.Inverse_Image]
Inverse_Image.F [variable, in Coq.Wellfounded.Inverse_Image]
Inverse_Image.Rof [variable, in Coq.Wellfounded.Inverse_Image]
Inverse_Image.f [variable, in Coq.Wellfounded.Inverse_Image]
Inverse_Image.R [variable, in Coq.Wellfounded.Inverse_Image]
Inverse_Image.B [variable, in Coq.Wellfounded.Inverse_Image]
Inverse_Image.A [variable, in Coq.Wellfounded.Inverse_Image]
Inverse_Image [section, in Coq.Wellfounded.Inverse_Image]
inverse_image_of_eq [lemma, in Coq.Relations.Relations]
inverse_image_of_equivalence [lemma, in Coq.Relations.Relations]
Inverse_Image [library]
Inverse.Hom12 [module, in Coq.Numbers.Natural.Abstract.NIso]
Inverse.Hom21 [module, in Coq.Numbers.Natural.Abstract.NIso]
Inverse.h12 [abbreviation, in Coq.Numbers.Natural.Abstract.NIso]
Inverse.h21 [abbreviation, in Coq.Numbers.Natural.Abstract.NIso]
Inverse.inverse_nat_iso [lemma, in Coq.Numbers.Natural.Abstract.NIso]
Inverse.NBasePropMod1 [module, in Coq.Numbers.Natural.Abstract.NIso]
_ == _ [notation, in Coq.Numbers.Natural.Abstract.NIso]
invert_heap [lemma, in Coq.Sorting.Heap]
Involutions [section, in Coq.ssr.ssrfun]
Involutions.A [variable, in Coq.ssr.ssrfun]
Involutions.f [variable, in Coq.ssr.ssrfun]
Involutions.Hf [variable, in Coq.ssr.ssrfun]
involutive [definition, in Coq.ssr.ssrfun]
inv_lt_rel [definition, in Coq.Arith.Wf_nat]
inv_fct [definition, in Coq.Reals.Ranalysis1]
inv_before_witness [definition, in Coq.Logic.ConstructiveEpsilon]
inv_bij [lemma, in Coq.ssr.ssrfun]
inv_inj [lemma, in Coq.ssr.ssrfun]
inv2 [projection, in Coq.Logic.Berardi]
inW_bij [lemma, in Coq.ssr.ssrbool]
INZ [definition, in Coq.micromega.RMicromega]
in_int_exists [lemma, in Coq.Arith.Between]
in_int_between [lemma, in Coq.Arith.Between]
in_int_Sp_q [lemma, in Coq.Arith.Between]
in_int_S [lemma, in Coq.Arith.Between]
in_int_p_Sq [lemma, in Coq.Arith.Between]
in_int_lt [lemma, in Coq.Arith.Between]
in_int_intro [lemma, in Coq.Arith.Between]
in_int [definition, in Coq.Arith.Between]
In_Image_elim [lemma, in Coq.Sets.Image]
in_holed_interval_dec [lemma, in Coq.Reals.Runcountable]
in_holed_interval [definition, in Coq.Reals.Runcountable]
in_unkey [abbreviation, in Coq.ssr.ssrbool]
in_simpl [lemma, in Coq.ssr.ssrbool]
in_collective [lemma, in Coq.ssr.ssrbool]
in_applicative [lemma, in Coq.ssr.ssrbool]
in_mem [definition, in Coq.ssr.ssrbool]
in_bdepth [lemma, in Coq.micromega.ZMicromega]
In_dec [definition, in Coq.Lists.ListDec]
In_decidable [lemma, in Coq.Lists.ListDec]
in_right [abbreviation, in Coq.Program.Utils]
in_left [abbreviation, in Coq.Program.Utils]
In_cons_tl [constructor, in Coq.Vectors.VectorDef]
In_cons_hd [constructor, in Coq.Vectors.VectorDef]
In_singleton [constructor, in Coq.Sets.Ensembles]
in_int [definition, in Coq.Reals.Ratan]
In_dec [abbreviation, in Coq.Lists.List]
In_rev [abbreviation, in Coq.Lists.List]
In_split [abbreviation, in Coq.Lists.List]
in_seq [lemma, in Coq.Lists.List]
in_prod_iff [lemma, in Coq.Lists.List]
in_prod [lemma, in Coq.Lists.List]
in_prod_aux [lemma, in Coq.Lists.List]
in_combine_r [lemma, in Coq.Lists.List]
in_combine_l [lemma, in Coq.Lists.List]
in_split_r [lemma, in Coq.Lists.List]
in_split_l [lemma, in Coq.Lists.List]
in_flat_map [lemma, in Coq.Lists.List]
in_map_iff [lemma, in Coq.Lists.List]
in_map [lemma, in Coq.Lists.List]
in_rev [lemma, in Coq.Lists.List]
In_nth_error [lemma, in Coq.Lists.List]
In_nth [lemma, in Coq.Lists.List]
in_app_iff [lemma, in Coq.Lists.List]
in_or_app [lemma, in Coq.Lists.List]
in_app_or [lemma, in Coq.Lists.List]
in_dec [lemma, in Coq.Lists.List]
in_inv [lemma, in Coq.Lists.List]
in_split [lemma, in Coq.Lists.List]
in_nil [lemma, in Coq.Lists.List]
in_cons [lemma, in Coq.Lists.List]
in_eq [lemma, in Coq.Lists.List]
In_InfA [lemma, in Coq.Lists.SetoidList]
In_InA [lemma, in Coq.Lists.SetoidList]
IN.Empty [definition, in Coq.MSets.MSetInterface]
IN.Equal [definition, in Coq.MSets.MSetInterface]
IN.In [axiom, in Coq.MSets.MSetInterface]
IN.In_compat [instance, in Coq.MSets.MSetInterface]
IN.t [axiom, in Coq.MSets.MSetInterface]
in1T [lemma, in Coq.ssr.ssrbool]
in1W [lemma, in Coq.ssr.ssrbool]
in2T [lemma, in Coq.ssr.ssrbool]
in2W [lemma, in Coq.ssr.ssrbool]
in3T [lemma, in Coq.ssr.ssrbool]
in3W [lemma, in Coq.ssr.ssrbool]
iota [definition, in Coq.Logic.Epsilon]
iota [definition, in Coq.Logic.ClassicalDescription]
IotaStatement [abbreviation, in Coq.Logic.ChoiceFacts]
IotaStatement_on [definition, in Coq.Logic.ChoiceFacts]
iota_imp_constructive_definite_description [lemma, in Coq.Logic.ChoiceFacts]
iota_spec [definition, in Coq.Logic.Epsilon]
iota_statement [lemma, in Coq.Logic.Epsilon]
iota_spec [definition, in Coq.Logic.ClassicalDescription]
IPR [definition, in Coq.Reals.Rdefinitions]
IPR [definition, in Coq.nsatz.Nsatz]
IPR_2 [definition, in Coq.Reals.Rdefinitions]
Irreflexive [record, in Coq.Classes.CRelationClasses]
Irreflexive [inductive, in Coq.Classes.CRelationClasses]
irreflexive [definition, in Coq.ssr.ssrbool]
Irreflexive [record, in Coq.Classes.RelationClasses]
Irreflexive [inductive, in Coq.Classes.RelationClasses]
irreflexivity [projection, in Coq.Classes.CRelationClasses]
irreflexivity [constructor, in Coq.Classes.CRelationClasses]
irreflexivity [projection, in Coq.Classes.RelationClasses]
irreflexivity [constructor, in Coq.Classes.RelationClasses]
IsAddSubMul [module, in Coq.Numbers.NatInt.NZAxioms]
IsAddSubMul.add_succ_l [axiom, in Coq.Numbers.NatInt.NZAxioms]
IsAddSubMul.add_0_l [axiom, in Coq.Numbers.NatInt.NZAxioms]
IsAddSubMul.add_wd [instance, in Coq.Numbers.NatInt.NZAxioms]
IsAddSubMul.mul_succ_l [axiom, in Coq.Numbers.NatInt.NZAxioms]
IsAddSubMul.mul_0_l [axiom, in Coq.Numbers.NatInt.NZAxioms]
IsAddSubMul.mul_wd [instance, in Coq.Numbers.NatInt.NZAxioms]
IsAddSubMul.sub_succ_r [axiom, in Coq.Numbers.NatInt.NZAxioms]
IsAddSubMul.sub_0_r [axiom, in Coq.Numbers.NatInt.NZAxioms]
IsAddSubMul.sub_wd [instance, in Coq.Numbers.NatInt.NZAxioms]
IsEq [module, in Coq.Structures.Equalities]
IsEqOrig [module, in Coq.Structures.Equalities]
IsEqOrig.eq_trans [axiom, in Coq.Structures.Equalities]
IsEqOrig.eq_sym [axiom, in Coq.Structures.Equalities]
IsEqOrig.eq_refl [axiom, in Coq.Structures.Equalities]
Isequence [section, in Coq.Reals.Rseries]
Isequence.An [variable, in Coq.Reals.Rseries]
IsEq.eq_equiv [instance, in Coq.Structures.Equalities]
IsHOneType [definition, in Coq.Logic.HLevels]
IsHProp [definition, in Coq.Logic.HLevels]
IsHSet [definition, in Coq.Logic.HLevels]
isIn [definition, in Coq.setoid_ring.Field_theory]
isIn_ok [lemma, in Coq.setoid_ring.Field_theory]
isLeZero [definition, in Coq.micromega.ZifyBool]
isLinearOrder [definition, in Coq.Reals.ConstructiveReals]
isLowerCut [definition, in Coq.Reals.ClassicalDedekindReals]
isLowerCut_hprop [lemma, in Coq.Reals.ClassicalDedekindReals]
IsNeg [abbreviation, in Coq.PArith.BinPos]
IsNul [abbreviation, in Coq.PArith.BinPos]
IsNZDomain [module, in Coq.Numbers.NatInt.NZAxioms]
IsNZDomain.bi_induction [axiom, in Coq.Numbers.NatInt.NZAxioms]
IsNZDomain.pred_succ [axiom, in Coq.Numbers.NatInt.NZAxioms]
IsNZDomain.pred_wd [instance, in Coq.Numbers.NatInt.NZAxioms]
IsNZDomain.succ_wd [instance, in Coq.Numbers.NatInt.NZAxioms]
IsNZOrd [module, in Coq.Numbers.NatInt.NZAxioms]
IsNZOrd.lt_succ_r [axiom, in Coq.Numbers.NatInt.NZAxioms]
IsNZOrd.lt_irrefl [axiom, in Coq.Numbers.NatInt.NZAxioms]
IsNZOrd.lt_eq_cases [axiom, in Coq.Numbers.NatInt.NZAxioms]
IsNZOrd.lt_wd [instance, in Coq.Numbers.NatInt.NZAxioms]
isometric_trans_rot [lemma, in Coq.Reals.Rgeom]
isometric_rot_trans [lemma, in Coq.Reals.Rgeom]
isometric_rotation [lemma, in Coq.Reals.Rgeom]
isometric_rotation_0 [lemma, in Coq.Reals.Rgeom]
isometric_translation [lemma, in Coq.Reals.Rgeom]
Isomorphism [module, in Coq.Numbers.Natural.Abstract.NIso]
Isomorphism.Hom12 [module, in Coq.Numbers.Natural.Abstract.NIso]
Isomorphism.Hom21 [module, in Coq.Numbers.Natural.Abstract.NIso]
Isomorphism.h12 [abbreviation, in Coq.Numbers.Natural.Abstract.NIso]
Isomorphism.h21 [abbreviation, in Coq.Numbers.Natural.Abstract.NIso]
Isomorphism.Inverse12 [module, in Coq.Numbers.Natural.Abstract.NIso]
Isomorphism.Inverse21 [module, in Coq.Numbers.Natural.Abstract.NIso]
Isomorphism.isomorphism [definition, in Coq.Numbers.Natural.Abstract.NIso]
Isomorphism.iso_nat_iso [lemma, in Coq.Numbers.Natural.Abstract.NIso]
IsOneTwo [module, in Coq.Numbers.NatInt.NZAxioms]
IsOneTwo.one_succ [axiom, in Coq.Numbers.NatInt.NZAxioms]
IsOneTwo.two_succ [axiom, in Coq.Numbers.NatInt.NZAxioms]
IsOpp [module, in Coq.Numbers.Integer.Abstract.ZAxioms]
IsOpp.opp_succ [axiom, in Coq.Numbers.Integer.Abstract.ZAxioms]
IsOpp.opp_0 [axiom, in Coq.Numbers.Integer.Abstract.ZAxioms]
IsOpp.opp_wd [instance, in Coq.Numbers.Integer.Abstract.ZAxioms]
IsPos [abbreviation, in Coq.PArith.BinPos]
IsStepFun [definition, in Coq.Reals.RiemannInt_SF]
IsStrOrder [module, in Coq.Structures.Orders]
IsStrOrder.lt_compat [instance, in Coq.Structures.Orders]
IsStrOrder.lt_strorder [instance, in Coq.Structures.Orders]
IsSucc [definition, in Coq.Init.Peano]
isT [definition, in Coq.ssr.ssrbool]
IsTotalOrder [module, in Coq.Structures.OrdersTac]
iszero [definition, in Coq.Numbers.Cyclic.Int31.Int31]
isZero [definition, in Coq.micromega.ZifyBool]
iszero_not_eq0 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
iszero_eq0 [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
isZ0 [definition, in Coq.micromega.ZMicromega]
isZ0_n0 [lemma, in Coq.micromega.ZMicromega]
isZ0_0 [lemma, in Coq.micromega.ZMicromega]
is_inverse [definition, in Coq.Logic.ExtensionalityFacts]
is_lub [definition, in Coq.Reals.Raxioms]
is_upper_bound [definition, in Coq.Reals.Raxioms]
is_neg_false [lemma, in Coq.micromega.RMicromega]
is_neg_true [lemma, in Coq.micromega.RMicromega]
is_neg [definition, in Coq.micromega.RMicromega]
is_zeroE [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
is_int [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
is_even_lsl_1 [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
is_even_0 [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
is_even_spec [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
is_even_bit [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
is_zero_spec [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
is_even [definition, in Coq.Numbers.Cyclic.Int63.Int63]
is_zero [definition, in Coq.Numbers.Cyclic.Int63.Int63]
is_even [definition, in Coq.Numbers.Cyclic.ZModulo.ZModulo]
is_subrelation [projection, in Coq.Classes.CRelationClasses]
is_subrelation [constructor, in Coq.Classes.CRelationClasses]
is_true_locked_true [lemma, in Coq.ssr.ssrbool]
is_true_true [lemma, in Coq.ssr.ssrbool]
is_eq [definition, in Coq.Lists.StreamMemo]
is_upper_bound_closed [lemma, in Coq.Reals.ConstructiveRealsLUB]
is_upper_bound_glb [lemma, in Coq.Reals.ConstructiveRealsLUB]
is_upper_bound_not_epsilon [lemma, in Coq.Reals.ConstructiveRealsLUB]
is_upper_bound_epsilon [lemma, in Coq.Reals.ConstructiveRealsLUB]
is_upper_bound_dec [lemma, in Coq.Reals.ConstructiveRealsLUB]
is_lub [definition, in Coq.Reals.ConstructiveRealsLUB]
is_upper_bound [definition, in Coq.Reals.ConstructiveRealsLUB]
is_path_from_imp_inductively_barred_at [lemma, in Coq.Logic.WKL]
is_path_from_restrict [lemma, in Coq.Logic.WKL]
is_path_from_characterization [lemma, in Coq.Logic.WKL]
is_path_from [inductive, in Coq.Logic.WKL]
is_subdivision [definition, in Coq.Reals.RiemannInt_SF]
is_lub_u [lemma, in Coq.Reals.Rtopology]
is_zero_spec_aux [lemma, in Coq.Numbers.Cyclic.Int63.Cyclic63]
is_true [definition, in Coq.Init.Datatypes]
is_eq_true [constructor, in Coq.Init.Datatypes]
is_diff_env_ex [lemma, in Coq.micromega.ZMicromega]
is_diff_env [definition, in Coq.micromega.ZMicromega]
is_diff_env_elt [record, in Coq.micromega.ZMicromega]
is_pol_Z0_eval_pol [lemma, in Coq.micromega.ZMicromega]
is_pol_Z0 [definition, in Coq.micromega.ZMicromega]
is_cnf_ff_inv [lemma, in Coq.micromega.Tauto]
is_cnf_tt_inv [lemma, in Coq.micromega.Tauto]
is_cnf_ff_cnf_ff [lemma, in Coq.micromega.Tauto]
is_cnf_tt_cnf_ff [lemma, in Coq.micromega.Tauto]
is_X_inv [definition, in Coq.micromega.Tauto]
is_X [definition, in Coq.micromega.Tauto]
is_cnf_ff [definition, in Coq.micromega.Tauto]
is_cnf_tt [definition, in Coq.micromega.Tauto]
is_subrelation [projection, in Coq.Classes.RelationClasses]
is_subrelation [constructor, in Coq.Classes.RelationClasses]
Is_true_eq_true2 [abbreviation, in Coq.Bool.Bool]
Is_true_eq_right [lemma, in Coq.Bool.Bool]
Is_true_eq_left [lemma, in Coq.Bool.Bool]
Is_true_eq_true [lemma, in Coq.Bool.Bool]
Is_true [definition, in Coq.Bool.Bool]
is_finite [definition, in Coq.Floats.PrimFloat]
is_infinity [definition, in Coq.Floats.PrimFloat]
is_zero [definition, in Coq.Floats.PrimFloat]
is_nan [definition, in Coq.Floats.PrimFloat]
is_heap_rec [lemma, in Coq.Sorting.Heap]
is_heap_rect [lemma, in Coq.Sorting.Heap]
is_heap [inductive, in Coq.Sorting.Heap]
iter [definition, in Coq.Init.Nat]
iter [definition, in Coq.funind.Recdef]
Iter [section, in Coq.funind.Recdef]
iter [abbreviation, in Coq.ZArith.Zmisc]
ITERATORS [section, in Coq.Vectors.VectorDef]
iter_nat [abbreviation, in Coq.Arith.Wf_nat]
iter_int31_iter_nat [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
iter_sqrt_correct [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
iter_sqrt [definition, in Coq.Numbers.Cyclic.Int63.Int63]
iter_int31 [definition, in Coq.Numbers.Cyclic.Int31.Int31]
iter_pos_invariant [abbreviation, in Coq.PArith.BinPos]
iter_pos_plus [abbreviation, in Coq.PArith.BinPos]
iter_pos_succ [abbreviation, in Coq.PArith.BinPos]
iter_pos_swap [abbreviation, in Coq.PArith.BinPos]
iter_pos_swap_gen [abbreviation, in Coq.PArith.BinPos]
iter_pos [abbreviation, in Coq.PArith.BinPos]
iter_pos [definition, in Coq.Floats.SpecFloat]
iter_nat_of_Z [lemma, in Coq.ZArith.Zmisc]
iter_nat_of_P [abbreviation, in Coq.PArith.Pnat]
Iter.A [variable, in Coq.funind.Recdef]
iter2_sqrt_correct [lemma, in Coq.Numbers.Cyclic.Int63.Int63]
iter2_sqrt [definition, in Coq.Numbers.Cyclic.Int63.Int63]
iter31_sqrt_correct [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
iter31_sqrt [definition, in Coq.Numbers.Cyclic.Int31.Int31]
iter312_sqrt_correct [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
iter312_sqrt [definition, in Coq.Numbers.Cyclic.Int31.Int31]
IVT [lemma, in Coq.Reals.Rsqrt_def]
IVT_cor [lemma, in Coq.Reals.Rsqrt_def]
IVT_interv [lemma, in Coq.Reals.Ranalysis5]
IVT_interv_prelim1 [lemma, in Coq.Reals.Ranalysis5]
IVT_interv_prelim0 [lemma, in Coq.Reals.Ranalysis5]
IZN [lemma, in Coq.Reals.RIneq]
IZN_var [lemma, in Coq.Reals.RiemannInt_SF]
IZR [definition, in Coq.Reals.Rdefinitions]
IZR_neq [lemma, in Coq.Reals.RIneq]
IZR_lt [lemma, in Coq.Reals.RIneq]
IZR_le [lemma, in Coq.Reals.RIneq]
IZR_ge [lemma, in Coq.Reals.RIneq]
IZR_nz [lemma, in Coq.QArith.Qreals]
IZR_eq [lemma, in Coq.Reals.DiscrR]
IZR1 [definition, in Coq.nsatz.Nsatz]
I_Or_r [constructor, in Coq.rtauto.Rtauto]
I_Or_l [constructor, in Coq.rtauto.Rtauto]
I_And [constructor, in Coq.rtauto.Rtauto]
I_Arrow [constructor, in Coq.rtauto.Rtauto]
i2 [projection, in Coq.Logic.Berardi]
i2l [definition, in Coq.Numbers.Cyclic.Int31.Cyclic31]
i2l_nshiftl [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
i2l_l2i [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
i2l_sneakl [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
i2l_sneakr [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
i2l_length [lemma, in Coq.Numbers.Cyclic.Int31.Cyclic31]
I31 [constructor, in Coq.Numbers.Cyclic.Int31.Int31]
Global Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (23119 entries) |
Notation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (950 entries) |
Module Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (746 entries) |
Variable Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (1492 entries) |
Library Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (523 entries) |
Lemma Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (10703 entries) |
Constructor Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (941 entries) |
Axiom Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (603 entries) |
Projection Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (465 entries) |
Inductive Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (290 entries) |
Section Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (473 entries) |
Instance Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (767 entries) |
Abbreviation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (1145 entries) |
Definition Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (3858 entries) |
Record Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (163 entries) |