Library Coq.Reals.ConstructiveCauchyRealsMult
Require Import QArith.
Require Import Qabs.
Require Import Qround.
Require Import Logic.ConstructiveEpsilon.
Require Export Reals.ConstructiveCauchyReals.
Require CMorphisms.
Local Open Scope CReal_scope.
Fixpoint BoundFromZero (qn : nat -> Q) (k : nat) (A : positive) { struct k }
: (forall n:nat, le k n -> Qlt (Qabs (qn n)) (Z.pos A # 1))
-> { B : positive | forall n:nat, Qlt (Qabs (qn n)) (Z.pos B # 1) }.
Lemma QCauchySeq_bounded (qn : nat -> Q) (cvmod : positive -> nat)
: QCauchySeq qn cvmod
-> { A : positive | forall n:nat, Qlt (Qabs (qn n)) (Z.pos A # 1) }.
Lemma CReal_mult_cauchy
: forall (xn yn zn : nat -> Q) (Ay Az : positive) (cvmod : positive -> nat),
QSeqEquiv xn yn cvmod
-> QCauchySeq zn Pos.to_nat
-> (forall n:nat, Qlt (Qabs (yn n)) (Z.pos Ay # 1))
-> (forall n:nat, Qlt (Qabs (zn n)) (Z.pos Az # 1))
-> QSeqEquiv (fun n:nat => xn n * zn n) (fun n:nat => yn n * zn n)
(fun p => max (cvmod (2 * (Pos.max Ay Az) * p)%positive)
(Pos.to_nat (2 * (Pos.max Ay Az) * p)%positive)).
Lemma linear_max : forall (p Ax Ay : positive) (i : nat),
le (Pos.to_nat p) i
-> (Init.Nat.max (Pos.to_nat (2 * Pos.max Ax Ay * p))
(Pos.to_nat (2 * Pos.max Ax Ay * p)) <= Pos.to_nat (2 * Pos.max Ax Ay) * i)%nat.
Definition CReal_mult (x y : CReal) : CReal.
Infix "*" := CReal_mult : CReal_scope.
Lemma CReal_mult_unfold : forall x y : CReal,
QSeqEquivEx (proj1_sig (CReal_mult x y))
(fun n : nat => proj1_sig x n * proj1_sig y n)%Q.
Lemma CReal_mult_assoc_bounded_r : forall (xn yn zn : nat -> Q),
QSeqEquivEx xn yn
-> QSeqEquiv zn zn Pos.to_nat
-> QSeqEquivEx (fun n => xn n * zn n)%Q (fun n => yn n * zn n)%Q.
Lemma CReal_mult_assoc : forall x y z : CReal,
CRealEq (CReal_mult (CReal_mult x y) z)
(CReal_mult x (CReal_mult y z)).
Lemma CReal_mult_comm : forall x y : CReal,
CRealEq (CReal_mult x y) (CReal_mult y x).
Lemma CReal_mult_proper_l : forall x y z : CReal,
CRealEq y z -> CRealEq (CReal_mult x y) (CReal_mult x z).
Lemma CReal_mult_lt_0_compat : forall x y : CReal,
CRealLt (inject_Q 0) x
-> CRealLt (inject_Q 0) y
-> CRealLt (inject_Q 0) (CReal_mult x y).
Lemma CReal_mult_plus_distr_l : forall r1 r2 r3 : CReal,
r1 * (r2 + r3) == (r1 * r2) + (r1 * r3).
Lemma CReal_mult_plus_distr_r : forall r1 r2 r3 : CReal,
(r2 + r3) * r1 == (r2 * r1) + (r3 * r1).
Lemma CReal_mult_1_l : forall r: CReal, 1 * r == r.
Lemma CReal_isRingExt : ring_eq_ext CReal_plus CReal_mult CReal_opp CRealEq.
Lemma CReal_isRing : ring_theory (inject_Q 0) (inject_Q 1)
CReal_plus CReal_mult
CReal_minus CReal_opp
CRealEq.
Add Parametric Morphism : CReal_mult
with signature CRealEq ==> CRealEq ==> CRealEq
as CReal_mult_morph.
Instance CReal_mult_morph_T
: CMorphisms.Proper
(CMorphisms.respectful CRealEq (CMorphisms.respectful CRealEq CRealEq)) CReal_mult.
Add Parametric Morphism : CReal_opp
with signature CRealEq ==> CRealEq
as CReal_opp_morph.
Instance CReal_opp_morph_T
: CMorphisms.Proper
(CMorphisms.respectful CRealEq CRealEq) CReal_opp.
Add Parametric Morphism : CReal_minus
with signature CRealEq ==> CRealEq ==> CRealEq
as CReal_minus_morph.
Instance CReal_minus_morph_T
: CMorphisms.Proper
(CMorphisms.respectful CRealEq (CMorphisms.respectful CRealEq CRealEq)) CReal_minus.
Add Ring CRealRing : CReal_isRing.
Lemma CReal_mult_0_l : forall r, 0 * r == 0.
Lemma CReal_mult_0_r : forall r, r * 0 == 0.
Lemma CReal_mult_1_r : forall r, r * 1 == r.
Lemma CReal_opp_mult_distr_l
: forall r1 r2 : CReal, - (r1 * r2) == (- r1) * r2.
Lemma CReal_opp_mult_distr_r
: forall r1 r2 : CReal, - (r1 * r2) == r1 * (- r2).
Lemma CReal_mult_lt_compat_l : forall x y z : CReal,
0 < x -> y < z -> x*y < x*z.
Lemma CReal_mult_lt_compat_r : forall x y z : CReal,
0 < x -> y < z -> y*x < z*x.
Lemma CReal_mult_eq_reg_l : forall (r r1 r2 : CReal),
r # 0
-> CRealEq (CReal_mult r r1) (CReal_mult r r2)
-> CRealEq r1 r2.
Lemma CReal_abs_appart_zero : forall (x : CReal) (n : positive),
Qlt (2#n) (Qabs (proj1_sig x (Pos.to_nat n)))
-> 0 # x.
Lemma CRealArchimedean
: forall x:CReal, { n:Z & x < inject_Q (n#1) < x+2 }.
Definition Rup_pos (x : CReal)
: { n : positive & x < inject_Q (Z.pos n # 1) }.
Lemma CRealLtDisjunctEpsilon : forall a b c d : CReal,
(CRealLtProp a b \/ CRealLtProp c d) -> CRealLt a b + CRealLt c d.
Lemma CRealShiftReal : forall (x : CReal) (k : nat),
QCauchySeq (fun n => proj1_sig x (plus n k)) Pos.to_nat.
Lemma CRealShiftEqual : forall (x : CReal) (k : nat),
CRealEq x (exist _ (fun n => proj1_sig x (plus n k)) (CRealShiftReal x k)).
Definition CRealNegShift (x : CReal)
: CRealLt x (inject_Q 0)
-> { y : prod positive CReal | CRealEq x (snd y)
/\ forall n:nat, Qlt (proj1_sig (snd y) n) (-1 # fst y) }.
Definition CRealPosShift (x : CReal)
: inject_Q 0 < x
-> { y : prod positive CReal | CRealEq x (snd y)
/\ forall n:nat, Qlt (1 # fst y) (proj1_sig (snd y) n) }.
Lemma CReal_inv_neg : forall (yn : nat -> Q) (k : positive),
(QCauchySeq yn Pos.to_nat)
-> (forall n : nat, yn n < -1 # k)%Q
-> QCauchySeq (fun n : nat => / yn (Pos.to_nat k ^ 2 * n)%nat) Pos.to_nat.
Lemma CReal_inv_pos : forall (yn : nat -> Q) (k : positive),
(QCauchySeq yn Pos.to_nat)
-> (forall n : nat, 1 # k < yn n)%Q
-> QCauchySeq (fun n : nat => / yn (Pos.to_nat k ^ 2 * n)%nat) Pos.to_nat.
Definition CReal_inv (x : CReal) (xnz : x # 0) : CReal.
Notation "/ x" := (CReal_inv x) (at level 35, right associativity) : CReal_scope.
Lemma CReal_inv_0_lt_compat
: forall (r : CReal) (rnz : r # 0),
0 < r -> 0 < ((/ r) rnz).
Lemma CReal_linear_shift : forall (x : CReal) (k : nat),
le 1 k -> QCauchySeq (fun n => proj1_sig x (k * n)%nat) Pos.to_nat.
Lemma CReal_linear_shift_eq : forall (x : CReal) (k : nat) (kPos : le 1 k),
CRealEq x
(exist (fun n : nat -> Q => QCauchySeq n Pos.to_nat)
(fun n : nat => proj1_sig x (k * n)%nat) (CReal_linear_shift x k kPos)).
Lemma CReal_inv_l : forall (r:CReal) (rnz : r # 0),
((/ r) rnz) * r == 1.
Lemma CReal_inv_r : forall (r:CReal) (rnz : r # 0),
r * ((/ r) rnz) == 1.
Lemma CReal_inv_1 : forall nz : 1 # 0, (/ 1) nz == 1.
Lemma CReal_inv_mult_distr :
forall r1 r2 (r1nz : r1 # 0) (r2nz : r2 # 0) (rmnz : (r1*r2) # 0),
(/ (r1 * r2)) rmnz == (/ r1) r1nz * (/ r2) r2nz.
Lemma Rinv_eq_compat : forall x y (rxnz : x # 0) (rynz : y # 0),
x == y
-> (/ x) rxnz == (/ y) rynz.
Lemma CReal_mult_lt_reg_l : forall r r1 r2, 0 < r -> r * r1 < r * r2 -> r1 < r2.
Lemma CReal_mult_lt_reg_r : forall r r1 r2, 0 < r -> r1 * r < r2 * r -> r1 < r2.
Lemma CReal_mult_eq_reg_r : forall r r1 r2, r1 * r == r2 * r -> r # 0 -> r1 == r2.
Lemma CReal_mult_eq_compat_l : forall r r1 r2, r1 == r2 -> r * r1 == r * r2.
Lemma CReal_mult_eq_compat_r : forall r r1 r2, r1 == r2 -> r1 * r == r2 * r.
Lemma CReal_mult_pos_appart_zero : forall x y : CReal, 0 < x * y -> 0 # x.
Fixpoint pow (r:CReal) (n:nat) : CReal :=
match n with
| O => 1
| S n => r * (pow r n)
end.
Lemma CReal_mult_le_compat_l_half : forall r r1 r2,
0 < r -> r1 <= r2 -> r * r1 <= r * r2.
Lemma CReal_invQ : forall (b : positive) (pos : Qlt 0 (Z.pos b # 1)),
CRealEq (CReal_inv (inject_Q (Z.pos b # 1)) (inr (CReal_injectQPos (Z.pos b # 1) pos)))
(inject_Q (1 # b)).
Definition CRealQ_dense (a b : CReal)
: a < b -> { q : Q & a < inject_Q q < b }.
Lemma inject_Q_mult : forall q r : Q,
inject_Q (q * r) == inject_Q q * inject_Q r.