Library Coq.nsatz.Nsatz
Require Import List.
Require Import Setoid.
Require Import BinPos.
Require Import BinList.
Require Import Znumtheory.
Require Export Morphisms Setoid Bool.
Require Export Algebra_syntax.
Require Export Ncring.
Require Export Ncring_initial.
Require Export Ncring_tac.
Require Export Integral_domain.
Require Import DiscrR.
Require Import ZArith.
Require Import Lia.
Require Export NsatzTactic.
Make use of discrR in nsatz
Ltac nsatz_internal_discrR ::= discrR.
Require Import Reals.
Require Import RealField.
Lemma Rsth : Setoid_Theory R (@eq R).
Instance Rops: (@Ring_ops R 0%R 1%R Rplus Rmult Rminus Ropp (@eq R)).
Defined.
Instance Rri : (Ring (Ro:=Rops)).
Defined.
Class can_compute_Z (z : Z) := dummy_can_compute_Z : True.
#[global]
Hint Extern 0 (can_compute_Z ?v) =>
match isZcst v with true => exact I end : typeclass_instances.
Instance reify_IZR z lvar {_ : can_compute_Z z} : reify (PEc z) lvar (IZR z).
Defined.
Lemma R_one_zero: 1%R <> 0%R.
Instance Rcri: (Cring (Rr:=Rri)).
Instance Rdi : (Integral_domain (Rcr:=Rcri)).
Require Import Reals.
Require Import RealField.
Lemma Rsth : Setoid_Theory R (@eq R).
Instance Rops: (@Ring_ops R 0%R 1%R Rplus Rmult Rminus Ropp (@eq R)).
Defined.
Instance Rri : (Ring (Ro:=Rops)).
Defined.
Class can_compute_Z (z : Z) := dummy_can_compute_Z : True.
#[global]
Hint Extern 0 (can_compute_Z ?v) =>
match isZcst v with true => exact I end : typeclass_instances.
Instance reify_IZR z lvar {_ : can_compute_Z z} : reify (PEc z) lvar (IZR z).
Defined.
Lemma R_one_zero: 1%R <> 0%R.
Instance Rcri: (Cring (Rr:=Rri)).
Instance Rdi : (Integral_domain (Rcr:=Rcri)).