Library Coq.Classes.Equivalence


Typeclass-based setoids. Definitions on Equivalence.

Author: Matthieu Sozeau Institution: LRI, CNRS UMR 8623 - University Paris Sud

Require Import Coq.Program.Basics.
Require Import Coq.Program.Tactics.

Require Import Coq.Classes.Init.
Require Import Relation_Definitions.
Require Export Coq.Classes.RelationClasses.
Require Import Coq.Classes.Morphisms.

Set Implicit Arguments.


Local Open Scope signature_scope.

Definition equiv `{Equivalence A R} : relation A := R.

Overloaded notations for setoid equivalence and inequivalence. Not to be confused with eq and =.


Notation " x === y " := (equiv x y) (at level 70, no associativity) : equiv_scope.

Notation " x =/= y " := (complement equiv x y) (at level 70, no associativity) : equiv_scope.

Local Open Scope equiv_scope.

Overloading for PER.

Definition pequiv `{PER A R} : relation A := R.

Overloaded notation for partial equivalence.

Infix "=~=" := pequiv (at level 70, no associativity) : equiv_scope.

Shortcuts to make proof search easier.

Program Instance equiv_reflexive `(sa : Equivalence A) : Reflexive equiv | 1.

Program Instance equiv_symmetric `(sa : Equivalence A) : Symmetric equiv | 1.

Program Instance equiv_transitive `(sa : Equivalence A) : Transitive equiv | 1.



Use the substitute command which substitutes an equivalence in every hypothesis.

Ltac setoid_subst H :=
  match type of H with
    ?x === ?y => substitute H ; clear H x
  end.

Ltac setoid_subst_nofail :=
  match goal with
    | [ H : ?x === ?y |- _ ] => setoid_subst H ; setoid_subst_nofail
    | _ => idtac
  end.

subst* will try its best at substituting every equality in the goal.

Tactic Notation "subst" "*" := subst_no_fail ; setoid_subst_nofail.

Simplify the goal w.r.t. equivalence.

Ltac equiv_simplify_one :=
  match goal with
    | [ H : ?x === ?x |- _ ] => clear H
    | [ H : ?x === ?y |- _ ] => setoid_subst H
    | [ |- ?x =/= ?y ] => let name:=fresh "Hneq" in intro name
    | [ |- ~ ?x === ?y ] => let name:=fresh "Hneq" in intro name
  end.

Ltac equiv_simplify := repeat equiv_simplify_one.

"reify" relations which are equivalences to applications of the overloaded equiv method for easy recognition in tactics.

Ltac equivify_tac :=
  match goal with
    | [ s : Equivalence ?A ?R, H : ?R ?x ?y |- _ ] => change R with (@equiv A R s) in H
    | [ s : Equivalence ?A ?R |- context C [ ?R ?x ?y ] ] => change (R x y) with (@equiv A R s x y)
  end.

Ltac equivify := repeat equivify_tac.

Section Respecting.

Here we build an equivalence instance for functions which relates respectful ones only, we do not export it.

  Definition respecting `(eqa : Equivalence A (R : relation A),
                          eqb : Equivalence B (R' : relation B)) : Type :=
    { morph : A -> B | respectful R R' morph morph }.

  Program Instance respecting_equiv `(eqa : Equivalence A R, eqb : Equivalence B R') :
    Equivalence (fun (f g : respecting eqa eqb) =>
                   forall (x y : A), R x y -> R' (proj1_sig f x) (proj1_sig g y)).

  Solve Obligations with unfold respecting in * ; simpl_relation ; program_simpl.


End Respecting.

The default equivalence on function spaces, with higher priority than eq.