Library Coq.Program.Wf
Reformulation of the Wf module using subsets where possible, providing
the support for Program's treatment of well-founded definitions.
Require Import Coq.Init.Wf.
Require Import Coq.Program.Utils.
Local Open Scope program_scope.
Section Well_founded.
Variable A : Type.
Variable R : A -> A -> Prop.
Hypothesis Rwf : well_founded R.
Variable P : A -> Type.
Variable F_sub : forall x:A, (forall y: { y : A | R y x }, P (proj1_sig y)) -> P x.
Fixpoint Fix_F_sub (x : A) (r : Acc R x) : P x :=
F_sub x (fun y: { y : A | R y x} => Fix_F_sub (proj1_sig y)
(Acc_inv r (proj2_sig y))).
Definition Fix_sub (x : A) := Fix_F_sub x (Rwf x).
Hypothesis F_ext :
forall (x:A) (f g:forall y:{y:A | R y x}, P (`y)),
(forall y:{y : A | R y x}, f y = g y) -> F_sub x f = F_sub x g.
Lemma Fix_F_eq :
forall (x:A) (r:Acc R x),
F_sub x (fun y:{y:A | R y x} => Fix_F_sub (`y) (Acc_inv r (proj2_sig y))) = Fix_F_sub x r.
Lemma Fix_F_inv : forall (x:A) (r s:Acc R x), Fix_F_sub x r = Fix_F_sub x s.
Lemma Fix_eq : forall x:A, Fix_sub x = F_sub x (fun y:{ y:A | R y x} => Fix_sub (proj1_sig y)).
Lemma fix_sub_eq :
forall x : A,
Fix_sub x =
let f_sub := F_sub in
f_sub x (fun y: {y : A | R y x} => Fix_sub (`y)).
End Well_founded.
Require Coq.extraction.Extraction.
Extraction Inline Fix_F_sub Fix_sub.
Set Implicit Arguments.
Reasoning about well-founded fixpoints on measures.
Section Measure_well_founded.
Variables T M: Type.
Variable R: M -> M -> Prop.
Hypothesis wf: well_founded R.
Variable m: T -> M.
Definition MR (x y: T): Prop := R (m x) (m y).
Lemma measure_wf: well_founded MR.
End Measure_well_founded.
#[global]
Hint Resolve measure_wf : core.
Section Fix_rects.
Variable A: Type.
Variable P: A -> Type.
Variable R : A -> A -> Prop.
Variable Rwf : well_founded R.
Variable f: forall (x : A), (forall y: { y: A | R y x }, P (proj1_sig y)) -> P x.
Lemma F_unfold x r:
Fix_F_sub A R P f x r =
f (fun y => Fix_F_sub A R P f (proj1_sig y) (Acc_inv r (proj2_sig y))).
Lemma Fix_F_sub_rect
(Q: forall x, P x -> Type)
(inv: forall x: A,
(forall (y: A) (H: R y x) (a: Acc R y),
Q y (Fix_F_sub A R P f y a)) ->
forall (a: Acc R x),
Q x (f (fun y: {y: A | R y x} =>
Fix_F_sub A R P f (proj1_sig y) (Acc_inv a (proj2_sig y)))))
: forall x a, Q _ (Fix_F_sub A R P f x a).
Hypothesis equiv_lowers:
forall x0 (g h: forall x: {y: A | R y x0}, P (proj1_sig x)),
(forall x p p', g (exist (fun y: A => R y x0) x p) = h (exist (fun y => R y x0) x p')) ->
f g = f h.
Lemma eq_Fix_F_sub x (a a': Acc R x):
Fix_F_sub A R P f x a =
Fix_F_sub A R P f x a'.
Lemma Fix_sub_rect
(Q: forall x, P x -> Type)
(inv: forall
(x: A)
(H: forall (y: A), R y x -> Q y (Fix_sub A R Rwf P f y))
(a: Acc R x),
Q x (f (fun y: {y: A | R y x} => Fix_sub A R Rwf P f (proj1_sig y))))
: forall x, Q _ (Fix_sub A R Rwf P f x).
End Fix_rects.
Tactic to fold a definition based on Fix_measure_sub.
Ltac fold_sub f :=
match goal with
| [ |- ?T ] =>
match T with
context C [ @Fix_sub _ _ _ _ _ ?arg ] =>
let app := context C [ f arg ] in
change app
end
end.
This module provides the fixpoint equation provided one assumes
functional extensionality.
The two following lemmas allow to unfold a well-founded fixpoint definition without
restriction using the functional extensionality axiom.
For a function defined with Program using a well-founded order.
Program Lemma fix_sub_eq_ext :
forall (A : Type) (R : A -> A -> Prop) (Rwf : well_founded R)
(P : A -> Type)
(F_sub : forall x : A, (forall y:{y : A | R y x}, P (` y)) -> P x),
forall x : A,
Fix_sub A R Rwf P F_sub x =
F_sub x (fun y:{y : A | R y x} => Fix_sub A R Rwf P F_sub (` y)).
Tactic to unfold once a definition based on Fix_sub.
Ltac unfold_sub f fargs :=
set (call:=fargs) ; unfold f in call ; unfold call ; clear call ;
rewrite fix_sub_eq_ext ; repeat fold_sub f ; simpl proj1_sig.
End WfExtensionality.